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Abstract: Radiation therapy often requires a computed tomography (CT) for treatment planning and an additional mag-

netic resonance (MR) imaging prior to the treatment for adaptation. With two different images from the same

scene, multi-modal image registration is needed to align areas of interest in both images. One idea to improve

the registration process is to perform an image synthesis that converts one image mode into another mode

prior to the registration. In this paper, we address the research needed to perform a thorough evaluation of

the synthesis step on overall registration performance using different well-known registration methods of the

Advanced Normalization Tools (ANTs) framework. Given abdominal images, we use CycleGAN for synthe-

sis and compare the registration performance to the one without synthesis by using four different well-known

registration methods. We show that good image synthesizing results lead to an average improvement in all reg-

istration methods, biggest improvement being achieved for the ‘Symmetric Normalization’ method with 8%

(measured with Dice-score). The overall best registration method with prior synthesis is ‘Symmetric Normal-

ization and Rigid’. Furthermore, we show that the images with bad synthetic results lead to worse registration,

thus suggesting the correlation between synthesizing quality and registration performance.

1 INTRODUCTION

Having accurate registration algorithms for multi-

modal images is highly needed in the field of im-

age guided radiation therapy. The imaging in radia-

tion therapy is often done in two steps. In the plan-

ning phase, an image based on computed tomography

(CT) is created to localise the target area and to calcu-

late a dose distribution. Right before the treatment

and/or during the treatment phase, further images

based on magnetic resonance imaging (MR) or cone-

beam computed tomography (CBCT) are taken (Qi,

2017) to deal with global displacements such as the

positioning of the patient as well as local changes

such as fill levels of organs or reductions in size of tu-

mor tissue. Multi-modal image registration is needed

to align areas of interest in the images taken with dif-
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ferent imaging techniques and presumably at different

times. Especially MR-CT registration is widely used

in radiation therapy because of the high soft-tissue

contrast and post-treatment analysis with the MR im-

ages (Chandarana et al., 2018).

In the past, several authors have worked on deep

learning image synthesis to improve the multi-modal

image registration task (Wei et al., 2019; McKenzie

et al., 2019; Tanner et al., 2018). The idea is that

the registration algorithms can focus on the easier

task of mono-modal image registration if one image

type (e.g. MR) is transformed into the other type

(e.g. CT) before the actual registration takes place.

In multi-modal registration, it is generally difficult to

identify these correspondences or similarity measures

because of the often highly different physical proper-

ties (Saiti and Theoharis, 2020). Current work lacks

the clear evaluation of registration performance using

a standardised dataset and multiple registration algo-

rithms. In this paper, we focus on evaluating the in-

fluence of MR-to-CT synthesis on the multi-modal

image registration performance. Given the abdom-



inal MR and CT images from the Learn2Reg2021-

challenge (Dalca et al., 2021), we perform image-

to-image synthesis via the CycleGAN framework to

create synthetic CT images and compare the four dif-

ferent registration methods ‘Rigid’, ‘Symmetric Nor-

malization’, ‘Symmetric Normalization and Rigid’ as

well as ‘Symmetric Normalization with Elastic Regu-

larization’ of the ANTs framework with and without

the synthetic CT image instead of the MR image. We

show that good synthesizing results lead to an aver-

age improvement in all registration methods. Further-

more, with synthesis the method ‘Symmetric Normal-

ization’ achieves the biggest improvement compared

to the non-synthetic registration and ‘Symmetric Nor-

malization and Rigid’ achieves the overall best regis-

tration result.

The remainder of the paper is structured as fol-

lows. Section 2 covers the preliminaries on the Cy-

cleGAN architecture and the process of image reg-

istration in general. Section 3 describes the current

state-of-the-art of image synthesis and image registra-

tion as well as how our work fits into other researches.

Section 4 introduces the used dataset with its prepro-

cessing steps. Section 5 describes the experimental

setup consisting of image synthesis and image reg-

istration. In Section 6, the results are presented and

discussed. Lastly, Section 7 gives a short conclusion

of the paper.

2 PRELIMINARIES

In this section, we give a short introduction to the im-

portant deep learning architectures used in this paper

as well as the overall goal and functionality of image

registration.

2.1 Deep learning architecture

The term deep learning (DL) covers techniques that

allow for computational models that consist of multi-

ple layers to learn multiple levels of representations.

These layers and their weights are not designed by

human engineers but are learned from data given a

specific task (LeCun et al., 2015). A Generative Ad-

versarial Network (GAN) is a DL concept consisting

of two neural networks: a generator G and a discrimi-

nator D (Goodfellow et al., 2014). The generator aims

to create synthetic images that are indistinguishable

from real data by the discriminator. The discrimina-

tor on the other hand, aims to identify real and fake

data correctly which leads to the so called adversar-

ial training between generator and discriminator. In

the training process, the generator synthesizes fake

data and receives feedback of its synthesizing quality

through the evaluation of the discriminator. If the dis-

criminator is able to differentiate the fake image cor-

rectly, the generator is penalized, otherwise the dis-

criminator is penalized. If the training between those

two neural networks is done in a well balanced way,

the generator learns to imitate the distribution of the

training data. The learning problem was originally

formulated as a minmax-problem

min
G

max
D

Ex∼preal
[log(D(x))]

+ Ez∼pz [log(1−D(G(z)))], (1)

where preal is the distribution of the training data and

pz of the input noise (Goodfellow et al., 2014).

A problem that arises with GANs is its training

instability which can lead to a mode collapse. The

discriminator alone cannot assure that the generator

creates synthetic data which is either divers or clearly

shows correspondences with the input data. Espe-

cially in image-to-image synthesis, it would be prob-

lematic if the generator just learns the mapping onto a

single image to satisfy the discriminator. To solve the

mode-collapse problem in data synthesis, the Cycle-

GAN architecture was developed (Zhu et al., 2017).

The CycleGAN consists of two generators and dis-

criminators for synthesizing from both domains onto

one another in a cycle consistent way. By using a sec-

ond generator to synthesize back into the original do-

main, the recreated image can be compared pixelwise

with the original image. For the sake of completeness,

DualGAN (Yi et al., 2017) is a related architecture

to CycleGAN that has been developed in parallel and

has been used to solve similar issues. In this paper,

we focus on the CycleGAN architecture.

2.2 Image registration

Image registration is a mathematical process that in-

volves the determination of a reasonable transforma-

tion between one or many target images and one refer-

ence image. Image registration is often used to com-

bine information of different image modalities like

the high soft-tissue contrast of the MR and the high

bone contrast of the CT or to handle images of the

same scene taken in different times (Qi, 2017). For

more details on medical image registration, see the

work of J. Modersitzki (Modersitzki, 2009).

In this paper, we use implemented registration

methods from the Advanced Normalization Tools

(ANTs) (Avants et al., 2011), more precisely from the

python version ANTsPy12. We choose the transform

1https://antspy.readthedocs.io/en/latest/index.html
2https://pypi.org/project/antspyx/0.3.3/
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types ‘Rigid’, ‘Symmetric Normalization’ (SyN),

‘Symmetric Normalization and Rigid’ (SyNRA) and

‘Symmetric Normalization with Elastic Regulariza-

tion’ (ElasticSyN) for registration. To avoid confu-

sion for the reader, we use ‘SyN’ as an abbreviation

for ‘Symmetric Normalization’ and ‘syn’ for ‘syn-

thetic’. Rigid transformation only consists of rotation

and translation but SyN (Avants et al., 2011) is used as

a symmetric diffeomorphic registration method with

mutual information as optimization metric, combined

with affine transformation as for the ANTs implemen-

tation. ElasticSyN has an additional elastic regular-

ization term and SyNRA has an additional rigid trans-

formation within.

A possible measure for the usage or evaluation of

image registration is given by a priori defined seg-

mentation masks that mark the pixelwise regions of

corresponding organs/segments in all images. Given

the segmentations of a reference image R s and of a

template image T s as well as a displacement u, the

Dice-score measures the overlap of the deformed seg-

mentation T s[u] and R s and is given by

Dice(T s
,R s

,u) = 2 ·
|T s[u]∩R s|

|T s[u]|+ |R s|
, (2)

where | · | denotes the amount and ∩ the intersection of

non-zero pixels. To clarify, one can represent the seg-

mentations as sets, consisting of tuples that represent

the pixels of the segments. Totally overlapping corre-

sponding segments get the highest possible score of 1,

disjoint segments score with 0 (Dice, 1945; Sùrensen,

1948).

3 RELATED WORK

At the current state of research, deep learning meth-

ods are used for a variety of applications e.g. image

recognition, image segmentation, data synthesis, im-

age restoration, natural language processing, image

registration etc. In the context of image synthesis,

derivations of GANs (Goodfellow et al., 2014) were

developed to enable text-to-image synthesis, high-

resolution synthesis of human image and even regis-

tration of medical images (Reed et al., 2016; Karras

et al., 2018; Mahapatra et al., 2018).

In 2017, Zhu and Park et al. introduced the frame-

work CycleGAN, enabling a wide usage of unpaired

image-to-image translation tasks (Zhu et al., 2017).

Some publications focused on the improvement of the

CycleGAN image synthesis in general. By enforcing

mutual information (MI) and structural consistency

on the synthesis (Ge et al., 2019), adding frequency-

supervised architecture between generator and dis-

criminator (Shi et al., 2021), studying the effects of

gradient consistency and training data size (Hiasa

et al., 2018a) or using a variety of loss functions to in-

fluence the synthesis (Kida et al., 2020), they showed

improvements on their individual datasets.

Non-registration use cases for multi-modal image

synthesis are widely investigated, especially by using

the CycleGAN framework. Wolterink et al. used the

CycleGAN to convert brain MR images into synthetic

CT images and determined an improvement of the use

of unpaired compared to paired training (Wolterink

et al., 2017). Others used CycleGAN or similar struc-

tures for MR/CT images to investigate the synthesis

using paired and unpaired data (Jin et al., 2019), to

create missing CT data (Hiasa et al., 2018b) or to im-

prove data segmentation (Jiang et al., 2018; Chart-

sias et al., 2017). In order to substitute/improve the

dose calculations of radiation treatment with CBCT

images, some researchers used CycleGAN to synthe-

size CBCT images to synthetic CT images (Kuckertz

et al., 2020; Liang et al., 2019; Gao et al., 2021; Kurz

et al., 2019).

For the specific case of image registration with

prior image synthesis, there are a few research stud-

ies investigating the influence of MR-CT image syn-

thesis on multi-modal image registration. These re-

searches use different datasets and evaluation meth-

ods, thereby coming to different results. Wei et al.

used CycleGAN synthesis and showed an improve-

ment in image registration performance by evaluat-

ing with the rigid and deformable ANTs method (Wei

et al., 2019). McKenzie et al. applied the synthesis

on images of the head-and-neck area and evaluated

the registration performance of a B-spline deformable

method, resulting in lower registration errors than

without synthesis as a prior (McKenzie et al., 2019).

On the other hand, Tanner et al. couldn’t show an

overall improvement by synthesizing whole-body MR

and CT scans and registering them with deformable

registration methods (Tanner et al., 2018). Addition-

ally, Jiahao Lu et al. evaluated the influence of syn-

thesis by CycleGAN and other synthesizing frame-

works with the registration performance on the open

source datasets ‘Zurich’, ‘Cytological’ and ‘Histolog-

ical’ and concluded that synthesis is only applicable

on easy multi-modal problems (Lu et al., 2021). Apart

from using the deep learning synthesis method Cy-

cleGAN, some researches utilized synthesis methods

from probabilistic frameworks or Patch-wise Random

Forests. In these papers, the influence of synthe-

sis was also evaluated using ‘SyN’ as a registration

method, among others (Cao et al., 2017; Roy et al.,

2014).

Because of the mixed results for the improvement

of registration performance with synthetic data, there



Figure 1: The axial slices of the MR image on the left and
the CT image on the right are shown with 3 of their repre-
sented segments. [Light blue] as the liver, [orange] as the
left kidney and [red] as the right kidney.

is a need to further investigate this application by

performing a well-structured analysis of different use

cases with different registration methods. We con-

tribute to this analysis of deep learning MR-CT image

synthesis on multi-modal image registration by eval-

uating the performance of four registration methods

of the ANTs framework (more precisely ANTsPy).

The image synthesis prior to the registration will be

performed with a CycleGAN implementation. The

MR-CT dataset used in this study consists of ab-

dominal images coming from the Learn2Reg2021-

challenge (Dalca et al., 2021).

4 DATASET

In this study, we use the MR and CT abdomen im-

ages used in and prepared from the Learn2Reg2021

challenge (Dalca et al., 2021). The 16 paired im-

ages from the TCIA dataset (Clark et al., 2013) are

split into eight training and eight testing samples.

The Learn2Reg organizers additionally have provided

manual segmentations for all eight training MR and

CT images for the organs liver, spleen, right kidney

and left kidney. Furthermore, 40 MR images from the

CHAOS dataset (Kavur et al., 2019) as well as 49 CT

images from the BCV dataset where additionally pro-

vided for training purposes. All images are standard-

ized to the image size 192x160x192 with a voxel size

of 2x2x2mm. The challenges of registration in com-

bination of the dataset are given by its multi-modal

scans, few/noisy annotations, large deformations and

missing correspondences. As an example, Figure 1

shows an MR image and its corresponding CT image

with three different colored annotated segments. To

further preprocess the data for 2D synthesis, we sliced

all volumes into 192x160 axial 2D images and indi-

vidually removed empty or incomplete slices from the

top or bottom of the volumes. Then we replaced the

intensities of body surrounding structures to the corre-

sponding background intensity which is -1000 for CT

images and 0 for MR images. The CT images were

also clipped into the intensity interval of [−400,600]

to artificially concentrate the relevant intensities. For

the follow-up registration process, we prepared the

segmentations of the training images to cover up the

same volume as the training images after slice reduc-

tion. After reduction, there are in total 5,448 MR and

9,189 CT 2D axial image slices available for the syn-

thesis training.

5 EXPERIMENTAL SETUP

The experiment consists of two separate image pro-

cessing methods executed consecutively. In the image

synthesis-stage, we learn the image-to-image transla-

tion between unpaired 2D MR and CT images. After-

wards, we use the synthetic CT images (synCT) to

investigate the differences in 3D image registration

performance between MR/CT and synCT/CT. The

source code is provided on github3.

5.1 Image Synthesis

The synthesizing framework used for the training of

MR-to-CT synthesis originates from the CycleGAN

implementation in PyTorch (Zhu et al., 2017; Isola

et al., 2017). In this implementation, the genera-

tors correspond to a ResNet structure, consisting of

mainly two down- and up-convolution blocks as well

as nine residual blocks in the lowest level in between.

The discriminators are named as 70PatchGAN and

consist of (down-)convolution blocks resulting in a

18x22 output with a 70x70 receptive field. We in-

tegrated an additional mutual information loss for the

CT-synthesis direction (MIA) as well as a gradient loss

into the training process for further regulation moti-

vated by the research from Ge and Wei et al. and

Hiasa et al. (Ge et al., 2019; Hiasa et al., 2018a).

The adversarial losses as well as the cycle loss and

the identity loss are originally used in the introduced

CycleGAN.

The resulting total loss function is then defined as

Ltotal = LadvA
+LadvB

+λcycleLcycle +λidtLidt

+λgradLgrad +λMILMIA . (3)

While training, the images are loaded in size

175x210, randomly cropped back to 160x192 and

scaled to the intensity range [−1,1]. The generators

are updated prior to the discriminators (Zhu et al.,

2017).

For the purpose of hyperparameter tuning, three

of the eight paired training images described in the

3https://github.com/nilsFrohwitter/I2I-Synthesis
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dataset Section 4 were extracted and used as val-

idation data. Following the suggestions from the

Learn2Reg-team, we chose the images with the num-

bers 12, 14 and 16 as the validation set. The hy-

pererparameter tuning resulted in the loss weights

λcycle = 5, λidt = 0.5, λgrad = 1 and λMI = 0.5 with 50

epochs of Adam-optimization (Kingma and Ba, 2015)

with beta = (0.5,0.999) and a constant learning rate

of lr = 0.0002, followed by 50 epochs with a linear

to zero decaying learning rate. With the best hyper-

parameters found for the training process, we trained

eight new models, each one by leaving out one of the

eight TCIA a priori defined training images for later

testing, performing a leave-one-out evaluation. Af-

ter training, the resulting eight individual testing im-

ages (in their original and synthetic form) are used

for the following registration evaluation. The quality

assessment of the synthesis is performed by visually

comparing the synthetic results with each other and

with its corresponding CT and MR images as well as

by controlling the synthesis continuity across all axial

slices in the 3D images. Thereby, we categorised the

images into three quality states: good, medium and

bad. In the evaluation of the following image registra-

tion, we differentiate the quality of the synthesis and

therefore analyze poorly synthesized data separately.

In our case, we have badly synthesized test images 06

and 10. Figure 2 shows a synthetic CT image slice

of the test images 14 as an example of good synthesis

and 10 as a bad one. The synthetic CT image slice

of Image 14 shows good intensity adaption while pre-

serving the organ structures properly. On the other

hand, the resulting synthetic CT image slice of Image

10 clearly shows major distortions of organ structures

after synthesis, which we rate to be an example of bad

synthesis. Image 06 also has major distortions after

synthesis, resulting especially in a high variation of

spine localisation along all image slices.

5.2 Image Registration

Image registration is performed in 3D with regis-

tration methods from the ANTsPy framework. We

use the methods ‘Rigid’, ‘SyN’, ‘SyNRA’ as well as

‘ElasticSyN’ in its predefined states. Because we aim

to evaluate the performance gain by using an addi-

tional synthesis step, we calculate two registrations

(with each method) for the eight images, one using

the original MR data and one using the prior synthe-

sized data (synCT). The determined deformations are

then applied to the segmentations of their respective

MR images.

All registration results are compared by calculat-

ing the Dice-score between the deformed segmenta-

Figure 2: From left to right: MR, synCT, corresponding CT.
Note, that the corresponding CT is not properly registered to
the MR. The top row shows test image 14 as an example of a
good synthesis where intensities are adopted and structures
are mainly preserved. The bottom row shows the test image
10 as a bad synthesis example where the synthetic CT is
greatly distorted.

tions of the MR images and the segmentations of the

CT images. We reduce the influence of randomness in

the registration process by performing the whole pro-

cess of learning, synthesis and registration five times

and using the average of all runs.

5.3 Additional image meta data

To further understand and interpret the results of reg-

istration in relation to the synthesis quality, we inves-

tigate some meta data of the original and synthetic

images. We calculate and compare the entropy of the

MR and CT images as well as of their synthetic cor-

respondences synCT and synMR. Furthermore, be-

sides visually interpreting, we use the FrÂechet Incep-

tion Distance (FID) to measure the quality of synthe-

sis in a quantitative way. The FID score compares

the mean and standard derivation of the deepest layer

of the pretrained Inception v3 model, which highly

correlates with human perception of similarity in im-

ages (Heusel et al., 2017). The lower the FID score,

the better an image represents the target dataset.

6 RESULTS AND DISCUSSION

The results in Table 1 of the four registration meth-

ods with and without a prior synthesis step show, that

when the synthesis results in realistic synthetic CT

images, this synthesis step also improves the average

image registration performance. For every ANTsPy

method, the average Dice-score of good synthesis

cases is higher with the use of the synthetic CT than

with the original MR image. The biggest improve-

ment with synthesis in registration performance is

achieved for the ‘SyN’ method with 8% Dice-score

improvement. The overall best registration method



Rigid SyN SyNRA ElasticSyN

Vol init MR sCT MR sCT MR sCT MR sCT

02 0.505 0.562 0.559 0.657 0.665 0.648 0.675 0.657 0.659

04 0.095 0.254 0.382 0.497 0.405 0.538 0.526 0.598 0.381

08 0.547 0.786 0.736 0.892 0.853 0.890 0.852 0.892 0.851

12 0.257 0.472 0.538 0.626 0.653 0.620 0.649 0.625 0.654

14 0.196 0.585 0.600 0.121 0.528 0.659 0.730 0.119 0.504

16 0.493 0.693 0.685 0.847 0.826 0.843 0.827 0.856 0.822

avggood 0.349 0.559 0.583 0.606 0.655 0.700 0.710 0.623 0.645

Table 1: Averaged Dice scores from 5 registration runs of the 6 good synthesized test images between the CT and MR/synthetic
CT (sCT) as initial values and after rigid, SyN, SyNRA and ElasticSyN registration. The maximum dice scores per image and
the averages over the images are highlighted as bold numbers. The highest Dice-score averaged over the 6 models is acquired
for SyNRA with the synthetic CT.

Rigid SyN SyNRA ElasticSyN

Vol init MR sCT MR sCT MR sCT MR sCT

06 0.465 0.505 0.599 0.401 0.252 0.326 0.272 0.345 0.248

10 0.380 0.502 0.522 0.636 0.321 0.642 0.321 0.637 0.323

avgbad 0.423 0.504 0.561 0.519 0.287 0.484 0.297 0.491 0.286

Table 2: Averaged Dice scores from 5 registration runs of the 2 bad synthesizing models between the CT and MR/synthetic
CT (sCT) as initial values and after rigid, SyN, SyNRA and ElasticSyN registration. The maximum dice scores per image and
the averages over the images are highlighted as bold numbers. The highest Dice-score averaged over the 2 models is acquired
for Rigid with the synthetic CT.

with prior synthesis is ‘SyNRA’, which achieves a

Dice-score of 0.710. As an illustration of the differ-

ences in the registration methods used on one test im-

age, the resulting deformed MR segments on top of

the CT image with and without synthesis are given in

Figure 3 from the test image 14. The different seg-

mentation overlaps on the corresponding CT image

are clearly visible, especially for the different regis-

tration methods of the MR-CT registration.

Besides, the Dice-scores of the registrations of the

badly synthesized images 06 and 10 show a distinct

degradation of registration performance in the SyN-

methods when using the synthetic CT instead of the

original MR image (s. Table 2). Interestingly, Rigid

is the only method where the synthesis results in an

averaged better Dice-score. For the good synthesized

images, it is, on average, the exact other way around.

The results clearly show the difference on the registra-

tion performance between goodly and badly synthe-

sized images, which leads to the idea of registration

improvement by simply further enhancing the synthe-

sizing quality.

Since the synthesis quality plays an important

role, we investigated if the change in entropy or the

FID score can explain/determine the synthesis quality.

Table 3 shows that neither score gives an precise in-

dividual explanation to the synthesis quality and reg-

istration performance. The FID score of synthetic CT

Image 10 (173) is a lot higher than the scores of the

other images, considering FID has a range of [88,173]

image quality H H FID FID

ID (synCT) (MR) (synCT) (MR) (synCT)

02 good 14.39 5.7 239 88

04 medium 14.59 5.79 219 118

06 bad 14.84 5.72 200 129

08 medium 12.31 5.77 237 123

10 bad 9.93 5.64 226 173

12 good 13.27 5.76 153 122

14 good 13.90 5.76 213 132

16 good 14.18 5.61 186 97

Table 3: After the training of the 8 models, the respective
resulting synthetic test images are visually assessed to be of
good, medium or bad quality. In order to reason this cate-
gorization, the entropy (H) as well as the frÂechet inception
distance (FID) is calculated before and after the MR-to-CT
synthesis. The FID score is here defined to be lower if the
image better represents the joint dataset of all the 8 corre-
sponding CT images.

for this data. Since the badly synthesized CT 06 has

a FID score of 129 and the goodly synthesized Image

14 has a comparatively high FID score of 132, the re-

liability of the FID score in terms of synthesis quality

and additionally in this research of registration per-

formance is highly questionable, which argues for a

necessary manual check of synthesis quality.

7 CONCLUSION

Given the abdominal MR and CT images of the

Learn2Reg2021-challenge, we investigated the ef-



Figure 3: Both columns show the original MR on the top
and the original CT on the bottom with its corresponding
segmentations (blue: liver, green: spleen, orange: left kid-
ney, red: right kidney). The first column shows the resulting
deformed MR-segmentation in the second and third image
after registration with ‘SyNRA’, where the second column
shows it after ‘ElasticSyN’ registration. The results of the
MR-CT registration is visualized in each second image and
of the synCT-CT registration in each third image.

fects of prior image synthesis on multi-modal MR-

to-CT image registration. Precisely, we trained eight

CycleGAN-models individually by leaving out one

of the eight TCIA a priori defined training images

for later testing and compared the image registration

results of four ANTs registration methods (‘Rigid’,

‘SyN’, ‘SyNRA’ and ‘ElasticSyN’) with and without

the use of the synthetic CT instead of the original MR

image. Additionally, we investigated two metrics for

determining synthesis quality. Overall, We show that

good synthesizing results lead to an average improve-

ment in all of the four registration methods. Further-

more, the biggest improvement in registration perfor-

mance is achieved for the ‘SyN’ method with 8% in

Dice-score and the overall best registration method

with prior synthesis is ‘SyNRA’. These results are an

important contribution to the discussion on the use-

fulness of synthesis for the registration task and show

promising positive effects. Additionally, the experi-

ments indicated that further improvements in image

synthesis will also benefit the registration task. Fu-

ture research should aim to make further validation on

the synthesis benefits using other datasets and other

multi-modal registration tasks. Also, methods for au-

tomatically evaluating the synthesis performance are

needed for an automated application of synthesis in

registration tasks.
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