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Abstract
Gaussian Bayesian networks are widely used for
modeling the behavior of continuous random vari-
ables. Lifting exploits symmetries when dealing
with large numbers of isomorphic random vari-
ables. It provides a more compact representation
for more efficient query answering by encoding
the symmetries using logical variables. This pa-
per improves on an existing lifted representation
of the joint distribution represented by a Gaus-
sian Bayesian network (lifted joint), allowing over-
laps between the logical variables. Handling over-
laps without grounding a model is critical for mod-
elling real-world scenarios. Specifically, this pa-
per contributes (i) a lifted joint that allows overlaps
in logical variables and (ii) a lifted query answer-
ing algorithm using the lifted joint. Complexity
analyses and experimental results show that — de-
spite overlaps — constructing a lifted joint and an-
swering queries on the lifted joint outperform their
grounded counterparts significantly.

1 Introduction and Related Work
Modeling real-world systems in areas such as healthcare, bio-
statistics, or financial markets requires formalisms to use con-
tinuous variables and relationships among them. These ar-
eas may also involve many objects in relation to each other,
affected by uncertainties. Probabilistic graphical models
(PGMs) such as Bayesian Networks (BNs) have been used to
model conditional independence assumptions regarding these
random variables (randvars) [Koller et al., 2009]. Being able
to efficiently answer queries in these models, also often re-
ferred to as inference, has triggered a lot of research [Zhang
and Poole, 1996; Blei et al., 2017; Salmerón et al., 2018].

To handle many objects efficiently, Poole [2003] intro-
duces first-order probabilistic inference, which exploits sym-
metries in a model by combining indistinguishable instances
using logical variables (logvars) to reason with representa-
tives for the represented instances. Using a compact rep-
resentation and performing inference with representatives is
also referred to as lifting and has been an active research field
in the past years [Kimmig et al., 2015; Sharma et al., 2018;
Holtzen et al., 2019]. For a discrete PGM, Taghipur et al.

[2013] present a lifted variable elimination algorithm and
Braun and Möller [2016] a lifted version of the junction
tree algorithm by Lauritzen and Spiegelhalter [1988]. In the
continuous setting, Choi et al. [2010] present a lifted ver-
sion for variable elimination in factor graphs with Gaussian
pairwise potentials. Hartwig and Möller [2020] apply the
concept of lifting to Gaussian Bayesian networks (GBNs),
which have been introduced by Shachter and Kenley [1989]
and widely applied across multiple fields [Cano et al., 2004;
Grzegorczyk, 2010; Huang et al., 2011; Froelich, 2015].

The current approach by Hartwig and Möller [2020] for-
bids overlaps between logvar sequences, which reduces the
applicability dramatically. This paper extends the approach
by generalizing existing and developing new algebraic oper-
ations to handle overlaps. Example 1 contains a simple sce-
nario that currently cannot be handled in a lifted way, but will
be supported by the techniques introduced in this paper.
Example 1 (Simple GBN with overlaps). Patients (P ) have
a disease severity level (S) which is influenced by getting a
specific dose (D) of a medicine (M ). Each medicine (M ) has
an effectiveness (E). The logvars here are the patients (P )
and the medicines (M ). The logvars combined with the rand-
vars group together isomorphic instances of patients getting
doses of medicine and medicines being effective, leading to so
called parameterized randvars (PRVs)E(M),D(P,M), and
S(P ). Overlaps are present if PRVs share the same logvar,
e.g., D(P,M) and E(M) share logvar M . The GBN puts
the PRVs into relation in the form of E(M) → D(P,M) →
S(P ), where M as well as P overlap between PRVs.

Specifically, this paper contributes (i) a lifted representa-
tion of the joint distribution of a Gaussian BN with symme-
tries, allowing overlaps in logical variables and (ii) a lifted
query answering approach using this lifted joint. Complexity
analyses and experimental results show that – despite over-
laps – constructing and answering queries on the lifted joint
outperform their grounded counterparts significantly.

The remainder of the paper is structured as follows. Sec-
tion 2 describes preliminary definitions and recaps the lifting
approach by Hartwig and Möller [2020]. Section 3 presents
the construction of the lifted joint, Section 4 introduces the
updated rules for arithmetic operations with the lifted joint,
and Section 5 explains query answering. Section 6 and Sec-
tion 7 present a theoretical and experimental look at the con-
tributions. We end with the conclusion and next steps.
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2 Preliminaries and Notations
This section covers notations and summarizes the result of
the work by Hartwig and Möller [2020]. Notation-wise, we
follow Taghipour et al. [2013], Braun and Möller [2016], and
Hartwig and Möller [2020]. Throughout this paper, we use
bold symbols for vectors, sets, sequences, and matrices, and
thin symbols for scalars or individual elements. In abuse of
notation, we use set operations for sequences, where we apply
the operation to the set containing the sequence elements.

2.1 Gaussian Bayesian Networks
Based on BNs this section defines GBNs and specifies their
semantics.
Definition 1. A BN is a directed acyclic graph whose vertices
represent N randvars Vt ∈ V with t = 1, ..., N and whose
edges U ⊂ (V,V) represent the dependencies between the
randvars. The set of parents Pa(Vt) of a randvar Vt ∈ V is
defined as the set of randvars that have a directed edge to Vt.
Definition 2. A GBN is a BN where all randvars are contin-
uous and normally distributed. The edges represent linear re-
lationships between the randvars. As in BNs, the joint density
can be factorized using the conditional probability densities
of Vt, t = 1, ..., N given it parents Pa(Vt):

P (Vt|Pa(Vt)) ∼ N (µVt +
∑

Vk∈Pa(Vt)

βVk,Vt(vk−µVk
), σ2

Vt
), (1)

where µVk
and µVt

are marginal means, σ2
Vt

is the node vari-
ance, and βVk,Vt represents the influence of parent Vk on its
child Vt.

The joint probability distribution P (V) over randvars V
is defined by a multivariate Gaussian distribution: P (V) =
N (µ,Σ), where µ denotes the mean vector and Σ the co-
variance matrix. This distribution can be constructed from
a GBN using the algorithm by Shachter and Kenley [1989],
which requires a topological ordering of the randvars in the
GBN. They use a transition matrix, here denoted as T , where
a non-zero entry at Tk,t = βk,t means that there is a parent-
child relationship between Vk and Vt. The matrix T simply
contains all β values to allow for matrix operations. The co-
variance matrix Σ is inductively built using T . It is for any t
and s = 1, ..., t− 1:

Σ11 = σV1
(2)

Σst = ΣssT st (3)

Σts = ΣT
st (4)

Σtt = ΣtsT st + σt (5)

2.2 Parameterized Models
The idea of parameterized models is to work with representa-
tives for a group of randvars sharing a probability distribution
and parents. Logvars identify groups and parameterize rand-
vars to represent a set of isomorphic randvars. The aim of
lifting is to work solely with PRVs as representatives for the
randvars belonging to the PRV.
Definition 3. Let V be a set of randvars and L be a set of
logvar names. A PRV X is a syntactical construct of a rand-
var V ∈ V combined with a sequence of logvars L ⊆ L into

V (L) to represent a set of randvars. If L = ∅, the PRV is
parameterless and constitutes a propositional randvar. The
domain D(L) = {l1, ..., lH} contains the instances of log-
var L. The domain of a sequence of logvars is defined as
D(L) = ×L∈LD(L). Grounding a PRV X with a logvar L
results in a set of randvars gr(X) = {Vl1 , ..., VlH}.

Each PRV X also has a range denoted as range(X) that
contains the possible values of X . Since we work with con-
tinuous normally distributed randvars, range(X) = R in
general. Instead of a discrete conditional probability table,
we specify a mean η and variance λ for each PRV X .

2.3 Parameterized Gaussian Bayesian Networks
Instead of N ground randvars V, a parameterized GBN con-
tains M PRVs X. Each PRV Xi ∈ X, i = 1, ...,M , has a
PRV mean ηi and a variance λi. Each edge between a par-
ent Xu and a child Xs has a linear influence βXu,Xs that
describes the linear relationship between the PRVs analo-
gously to the propositional GBN of Definition 2. Grounding
a PRV Xi leads to a set of ground randvars Vi = gr(Xi)
with |Vi| = |D(Li)| that have the same mean and vari-
ance. Grounding a topologically ordered list of PRVs results
in a topologically ordered list of ground randvars because the
parent-child relationships for each ground randvar are defined
by the parent-child relationships of the corresponding PRV.
A propositional randvar V can be interpreted as a PRV V (L)
with |D(L)| = 1. There are three different kinds of relation-
ships between two PRVs Xi and Xj :
No parent: A PRV has no parent PRV, resulting in no influ-

encing factors on the PRV.
Disjoint logvar sets: The logvars Li of the parent PRV Xi

and the logvars Lj of the child PRV Xj are disjoint.
Disjoint logvar sets result in a relationship from every
randvar in gr(Xi) to every randvar in gr(Xj).

Overlapping logvar sets: The logvars Li of the parent PRV
Xi and the logvars Lj of the child PRV Xj overlap, i.e.,
Lshared := Li ∩Lj 6= ∅. Grounding results in a relation
where each child node is influenced by all |D(Li \ Lj)|
parents that share the same grounding of Lshared.

For ease of notation, we assume a global sorting Ω of all
model logvars such that every logvar sequence uses the global
sorting for ordering its logvars. This sorting places no restric-
tion on the expressivity of the model. In the course of this
paper, we need the following three helper functions.
Definition 4. For two sequences of logvars Li and Lj , we
define a function seq(Li,Lj) that returns the combined se-
quence of logvars according to the global sorting Ω. Given
L ∈ seq(Li, Lj), we define

dim(L,Li) =

{
|D(L)| if L ∈ Li
1 otherwise

(6)

ov(L,Li,Lj) =

{
1 if L ∈ (Li ∩Lj)
0 otherwise.

(7)

2.4 Queries
Query answering concerns queries for (conditional) marginal
probabilities or distributions of a set of randvars (given a set
of events as evidence), defined as follows.
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Definition 5. A query P (Q|E = e) consists of a query set
Q ⊆ V and a set of events {Eh = eh}Oh=1 with eh ∈ R where
Eh ∈ V and O is the number of observations.

2.5 Current Lifting Approach
Hartwig and Möller [2020] lift the algorithm by Shachter and
Kenley [1989] for parameterized GBNs with disjoint logvar
sets between parent and child nodes. The lifted representation
of the covariance matrix is given by the M -dimensional vec-
tor λ and theM×M -dimensional matrix ρ, where λ is filled
with the individual λ values of the PRVs and all elements of
ρ are calculated as follows without groundings:

ρXi,Xj
=

∑
Xu∈Pa(Xj)

(
ρXi,Xu

|D(Lu)|+ δXu,Xj
λXj

)
βXu,Xj

,

(8)

where δ is the Kronecker delta function that equals one if
Xu = Xj . The lifted representation can be grounded by

ΣVs,Vt = ρlif(Vs),lif(Vt) + δVs,Vtλlif(Vs), (9)

where lif(Vs) refers to the PRV that contains the specific
ground randvar Vs.

Equation (8) makes it apparent that overlaps are excluded
as it posits that all groundings of a parent PRV have con-
nections to all groundings of the child PRV. This all-to-all
connection does not happen when overlaps occur in the two
logvar sequences. With this limitation, answering a query
P (Q|E = e) is done using lifted operations for matrix mul-
tiplication and inversion together with

µ∗ = µQ + ΣQEΣ−1
EE(e− µE) (10)

Σ∗ = ΣQQ −ΣQEΣ−1
EEΣEQ. (11)

For details on how to come up with the closed form for con-
ditional Gaussian distributions, see, e.g., Eaton [1983].

3 Handling Overlaps in the Lifted Joint
When allowing overlaps between the logvars of a parent and
a child PRV, connections from parent to child grounding only
exist if the groundings share the same instances of the over-
lapping logvars. This violates the assumptions about disjoint
logvars, causing that Eq. (8) no longer holds. Therefore, we
need to specify the general form of the transition matrix T
given overlaps and construct a lifted representation of the co-
variance matrix anew.

The main result of this section is a lifted representation for
the values in the covariance matrix in the form ofM ·M lifted
covariance vectors, where each covariance vector ρ(i,j) has a
dimensionality of 2Li∩Lj , which does not depend on the do-
main sizes, together with a lifted construction approach to get
the lifted representation. Specifically, this section derives the
main result and shows that the lifted representation is an exact
alternative representation that exploits the structure imposed
by isomorphic randvars. For brevity: If we index the covari-
ance matrix Σ with a PRV index, we refer to the block in the
covariance matrix belonging to the PRV.

3.1 General Form of the Transition Matrix
The transition matrix T can be structured into M × M
blocks. Each block T i,j describes the relationships between
all randvars represented by Xi and all randvars represented
by Xj . As the randvars are isomorphic, we can proceed
block-wise instead of line-wise in Eqs. (2) to (5). In the
non-overlapping case, a block contains either zeroes, namely,
if there is no parent-child relationship between Xi and Xj ,
or the same entries denoted as βi,j resulting in an equation
T i,j = βi,jJ|D(Li)|×|D(Lj)| for a block, where J denotes the
all-ones matrix. For a full overlap, each randvar in gr(Xi) has
a connection to only one randvar in gr(Xj), namely, where
Xi and Xj are grounded with the same instances. Given a
global ordering, a full overlap results in a block design of
T i,j = βi,jI|D(Li)|×|D(Lj)|. Given a full overlap, we could
add non-overlapping logvars. Adding a non-overlapping ad-
ditional logvar Lp in the parent sequence implies that pre-
viously one randvar is now replaced by |D(Lp)| randvars,
which leads to a Kronecker multiplication of a J|D(Lp)|×1

column vector (parent variables correspond to rows). Analo-
gously, a non-overlapping additional logvar Lc in the child
PRV results in a Kronecker multiplication of a J1×|D(Lc)|
row vector. Depending on the global ordering of the logvars,
we get the following general formula for T , with J0 = I:

T i,j = βi,j
⊗

l∈seq(Li,Lj)

J
ov(l,Li,Lj)

dim(l,Li)×dim(l,Lj). (12)

3.2 Constructing the Covariance Matrix
The lifted representation of the transition matrix T allows for
calculating a lifted version of the covariance matrix Σ as the
dimensions of the blocks are determined by the logvars in
the same way. The critical steps are Eqs. (3) and (5), which
are inductive formulations. Therefore, we use an induction-
like approach to show that all blocks follow a fixed structure,
which enables a lifted Σ.

During construction and query answering, we will need to
iterate over all possible combinations of J and I for a logvar
sequence L. For ease of notation, we use that J1 = J and
J0 = I and iterate over a binary vector q from 0 = 0 . . . 0
(all I) to 1 = 1 . . . 1 (all J) for L to use as exponents to J as
basis. The term Q refers to the set of all possible permuta-
tions. Each position in q can be mapped to the corresponding
logvars in L. A superscript i means that q(i) refers to log-
vars Li, a superscript (i, j) refers to the logvars in Li ∩ Lj .
Without an overlap, we set q to 1. In slight abuse of notation,
we use a projection πL(q) to mean projecting q onto those
entries that are mapped to logvars in L. Similarly, a selection
σq(Q′) yields those vectors q′ inQ′ where q′, projected onto
the shared logvars with q, has the same values as q.

The assumed structure of an on-diagonal block in Σ, rep-
resenting the relationship of PRV Xi with itself, is

Σi,i =
1∑

q(i)=0

ρ
(i)

q(i)

⊗
L∈Li

J
πL(q(i))
|D(L)|×|D(L)|, (13)

for which we have to store the 2|Li|-dimensional vector ρ(i).
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For Xi, Xj , we assume the following off-diagonal structure:

Σi,j =
1∑

q(i,j)=0

ρ
(i,j)

q(i,j)

⊗
L∈seq(Li,Lj)

J
qexp(q(i,j),L)
dim(L,Li)×dim(L,Lj) (14)

with

qexp(q(i,j), L) =

{
πL(q(i,j)) if L ∈ (Li ∪Lj)
1 otherwise.

(15)

Equation (13) is a special case of Eq. (14) as both logvar se-
quences involved are equal, i.e., q(i,j) = q(i), seq(Li,Li) =
Li, and dim and qexp simplifying to their first cases.

Next, we show that, given the assumed structures, all
blocks added to the covariance matrix follow the same for-
mat. The formula for a new block is.

Σi,j =

j−1∑
n=1

Σi,nT n,j (16)

Inserting Eqs. (12) and (14) into Eq. (16) for one arbitrary
summand n = k results in

1∑
q(i,k)=0

ρ(i,k)

q(i,k)

⊗
L∈seq(Li,Lk)

J
qexp(q(i,k),L)
dim(L,Li)×dim(L,Lk)


·

βk,j ⊗
L∈seq(Lk,Lj)

J
ov(L,Lk,Lj)

dim(L,Lk)×dim(L,Lj)

 (17)

For the combinations of Li, Lk, and Lj , there are seven
possible cases (for brevity, we write ` = |D(L)|):

1. L ∈ Lj ∩Lk and L /∈ Li, result: I`J`×1 = J`×1

2. L ∈ Lj and L /∈ Lk ∪Li, result: J`×1 · 1 = J`×1

3. L ∈ Lk ∩Li and L /∈ Lj , result: J1×`I` = J1×`

4. L ∈ Li and L /∈ Lk ∪Lj , result: 1 · J1×` = J1×`

5. L ∈ Lk and L /∈ Li ∪Lj , result: J1×`J`×1 = `

6. L ∈ Lj ∩Lk ∩Li, result: I`I` = I`

7. L ∈ Li ∩Lj and L /∈ Lk, result: J`×1J1×` = J`×`

Cases 1 and 2 result in the same kron factor, independently
of Lk. The same holds for Cases 3 and 4. Case 5 requires
a |D(L)| factor for all summands, which does not affect the
structure. Cases 6 and 7 depend on Lk. Both cases are taken
care of in Eq. (14) as whenever Li ∩ Lj 6= ∅, we keep the
corresponding logvars in the summation index. Every entry
of the new ρ(i,j) vector can be calculated as follows.

ρ
(i,j)

q(i,j) =

j−1∑
n=1

∑
q∈σ

q(i,j) (Q(i,n))

ρ(i,n)
q βn,j

∏
L∈(Ln\Lj)

|D(L)|πL(q) (18)

The transpose calculation in Eq. (4) stays in the same struc-

ture given by Eq. (14):

ΣT
i,j

=

 1∑
q(i,j)=0

ρ
(i,j)

q(i,j)

⊗
L∈seq(Li,Lj)

J
qexp(q(i,j),L)
dim(L,Li)×dim(L,Lj)

T

=
1∑

q(i,j)=0

ρ
(i,j)

q(i,j)

⊗
L∈seq(Li,Lj)

J
qexp(q(i,j),L)
dim(L,Lj)×dim(L,Li)

=Σj,i

(19)

Based on the formula for calculating a new off-diagonal
block, we apply Eq. (5) to calculate a new on-diagonal block.
The only difference to the off-diagonal case is that we addi-
tionally add the PRV variance λXj

to the diagonal after cal-
culating the ρ vector using Eq. (18), meaning, we add PRV
variance λXj

to the one summand indexed by 0 . . . 0:

ρ
(j,j)
0...0 ← ρ

(j,j)
0...0 + λXj

(20)

The last part of our induction-like proof is to show that
our starting point is in line with our assumptions. Based on
the definition by Shachter and Kenley [1989], we know that
Σ11 = λX1

I, which is a specific case of the general form
from Eq. (2), where only ρ(1)

0...0 has a value unequal to zero.

3.3 Lifted Representation
With Λ as the overall number of logvars, we can record that
the lifted representation requires

1. M ·M lifted covariance vectors, where each covariance
vector ρ(i,j) has a dimensionality of 2|Li∩Lj |,

2. an M -dimensional mean vector η,
3. a Λ-dimensional cardinality vector τ for the logvars, and
4. aM×Λ-dimensional mapping ψ from PRVs to involved

logvars.
Based on Eq. (14), we can convert the lifted representation

of the covariance matrix back into a grounded representation.
Given the lifted joint of the full joint distribution represented
by a parameterized GBN and a fully lifted construction, we
now have to specify arithmetic operations for working with
the lifted joint, which we need for lifted query answering.

4 Arithmetic Operations in the Lifted Joint
Since handling overlaps results in a more complex lifted rep-
resentation of the joint distribution, we need new rules for
working with this lifted representation to support lifted query
answering. Adding or subtracting two blocks with matching
dimensions as well as a summation over the same index set
is straight-forward, i.e., the corresponding ρ values are added
or subtracted. Multiplication and inversion are more complex
and we show next how to handle them.

4.1 Multiplication
Multiplying two blocks Σi,j ,Σj,k of the same structure of
Eq. (14) boils down to a repeated application of Eq. (17) be-
cause every summand of Σi,j is multiplied with every sum-
mand of Σj,k, and every individual summand of Σj,k has the
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same structure as the T matrix, meaning we can calculate the
ρ-value of the resulting matrix in a lifted way as follows:

ρ
(new)

q(i,k) =
1∑

q(i,j)=0

1∑
q(j,k)=0

id(q(i,k), or(q(i,j), q(j,k)))

ρ
(i,j)

q(i,j)ρ
(j,k)

q(j,k)

∏
L∈Lj

|D(L)|lexp(L,q
(i,j),q(j,k))

(21)

with or(q(i,j), q(j,k)) as the bitwise or-operation, a function
id that returns 1 if the resulting logvar sequence of the or-
operation is identical to the values in q(i,k) at the logvar po-
sitions referenced in q(i,k), i.e.,

id(q(i,k), q) =

{
1 if πq(i,k)(q) = q(i,k)

0 otherwise
(22)

and a function lexp

lexp(L, q(i,j), q(j,k)) =1
if (L ∈ Lj \Li ∨ πL(q(i,j)) = 1)

∧ (L ∈ Lj \Lk ∨ πL(q(j,k)) = 1)

0 otherwise
(23)

which returns 1 if the referenced logvar L fulfils both parts
of a conjunction. The first part asks that L occurs only in Lj
and not Li or that the value of L in q(i,j) is 1, which can
only happen if the first disjunct is false. The second part asks
the same regarding k instead of i. The returned value as an
exponent ensures that the factor of the domain size |D(L)|
occurs whenever two J’s meet.

The main idea of Eq. (21) is to take into account all possi-
ble combinations of J and I matrices that occur in the sum-
mations of both blocks. Block matrix equation rules allow
us to use Eq. (21) also for multiplying rows or matrices of
structured blocks as long as the dimensions are matching.

4.2 Inversion
In the non-overlapping case, Hartwig and Möller [2020]
use the recursive block matrix inversion approach by Bern-
stein [2009], that we transfer to this case where overlaps are
allowed:[

Ã B̃

C̃ D̃

]−1

=

[
O P
Q R

]
=

[
Ã
−1

+ Ã
−1
B̃F̃

−1
C̃Ã

−1
−Ã

−1
B̃F̃

−1

−F̃
−1
C̃Ã

−1
F̃
−1

]
,

(24)

where
F̃ = D̃ − C̃Ã

−1
B̃. (25)

This approach needs to be able to perform matrix multipli-
cation, which we have already described and a way to invert
blocks in the structure of on-diagonal blocks (see Eq. (13)).
For this inversion, we use the lemma by Searle and Hender-
son [1979], for which they provide a detailed deduction and
proof in their work:

Lemma 1. Given

V p =
1∑

q=0

θq(Jqpnp
⊗ ...⊗ Jq1np

), (26)

of order Np =
∏p
r=1 nr where qi refers to the entries in q

and ni to each dimension, the inverse is given by

V −1
p =

1∑
q=0

κq(Jqpnp
⊗ ...⊗ Jq1np

), (27)

where

T p =

[
1 0
1 np

]
⊗ ...⊗

[
1 0
1 n1

]
(28)

and
κ = T−1 1

Tθ
. (29)

With Lemma 1, lifted subtraction, and lifted matrix mul-
tiplication, we can now perform a block matrix inversion to
invert the full covariance matrix in a lifted way.

5 Lifted Query Answering
A query P (Q|E = e) as given in Definition 5 involves a
query set Q and evidence E = e. Equations (10) and (11)
describe the formulas for determining the posterior distribu-
tion N (µ∗,Σ∗). The involved matrices ΣQE , ΣEE , and
ΣEQ are sub-matrices of the overarching Σ matrix. Not all
sub-matrices follow the structure of Eq. (14). The structure
occurs if all ground observations E and query randvars Q
refer to the same set of logvar instances for all shared log-
vars. We call the query to be liftable if E and Q fulfill this
condition. Then, ρlif(E) contains only a subset of ρ vectors
and the cardinality for all operations is reduced to the logvar
cardinality occurring in the query. Using the lifted represen-
tation combined with the lifted operations for multiplication
and inversion described in Section 4, a lifted representation
ρ∗ for the matrix Σ∗ can be generated. To get the grounded
query answer Σ∗, ρ∗ can simply be grounded. The µ∗ needs
to be calculated grounded because it involves grounded ev-
idence. We can ground ΣQEΣ−1

EE and multiply it with the
vector e− µE to get µ∗.

6 Complexity
We discuss the runtime complexity of constructing the lifted
joint and using it for query answering. As stated above we
have N randvars, combined into M PRVs, using Λ logvars.
We use S to denote the longest occurring logvar sequence.

6.1 Constructing the Lifted Joint
For constructing the ground level covariance matrix in the
joint distribution, we have an upper bound of O(N3). Our
lifted approach is fully independent ofN , because we directly
iterate over M PRVs. Allowing for overlaps results in itera-
tions over binary vectors. We need to potentially iterate over
O(2Λ) permutations, resulting in an overall runtime complex-
ity of O(M32Λ). Since M � N and 2Λ � N with decent
domain sizes, it is a significant improvement.
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6.2 Lifted Query Answering
We denote the number of queried randvars as NQ and the
number of evidence randvars as NE . Furthermore, we refer
to the number of PRVs involved in the NQ and NE randvars
using MQ and ME , respectively.

Matrix multiplication and inversion drive the complexity
of query answering. Although there are matrix inversion and
multiplication algorithms that have a runtime complexity of
less than O(N3), for the sake of simplicity, we take O(N3)
as an upper bound [Le Gall, 2014], which results in a runtime
complexity ofO(N3

E +N2
ENQ+NEN

2
Q). Depending on the

set sizes, one of the terms dominates the other.
In the lifted case, multiplying two blocks of size 2S has a

complexity of O(22S) because in the worst case we need to
iterate fully through all possible I, J combinations. Thus,
the matrix multiplications operations have complexity of
O(M2

EMQ22S) and O(MEM
2
Q22S). The inversion of one

individual block on the diagonal of the covariance matrix in-
volves the multiplication of two matrices, both with at most
2S × 2S dimensions, resulting in a complexity of O(23S). In
the block matrix inversion, we have at most ME recursive
function calls and Kronecker component block multiplica-
tions of at mostME blocks, resulting in a combined inversion
complexity of O(ME23S +M2

E2S).
To calculate the mean vector, we still have ground opera-

tions. However, the dependency on both NQ and NE is only
linear: Grounding the result of ΣQEΣ−1

EE is in O(NQNE)
and multiplying the result with the ground level evidence vec-
tor e− µE is in O(NQNE), as well.

Overall, this results in a complexity of O(M2
EMQ22S +

MEM
2
Q22S + ME23S + NQNE). Unfortunately, the last

term means that query answering is not fully lifted. Com-
pared to the non-overlapping case, NQ now also appears as
a ground term. We cannot really avoid NE because to incor-
porate ground evidence, we always need to at least visit each
evidence randvar once. The dependency on NQ might be a
focus for further research, though.

7 Experimental Evaluation
We demonstrate the complexity results by evaluating con-
structing the lifted joint and answering queries.

We set up an experiment with 4 PRVs and 5 logvars that are
partially shared. We increase the domain sizes of 2 logvars in
exponential steps (from 2 to 27) resulting in around 20,000
randvars in the grounded model for the largest domains. For
conditional query answering, we introduce evidence for the
majority of the randvars and use a query set of 4 randvars.

Figures 1 and 2 show the results. For both benchmarks,
the lifted version is significantly faster. Similar to the re-
sults by Hartwig and Möller [2020], construction is indepen-
dent of the domain sizes of the logvars (i.e., the number of
grounded randvars) and query answering shows some depen-
dence on the number of evidence randvars. The results also
show that working with the more complex structure of rep-
resenting blocks in the covariance matrix with ρ comes with
additional overhead recognizable in the low cardinality cases.

In summary, the runtimes reflect that models with over-
laps in the logvar sequences make constructing and query an-
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Figure 1: Runtimes for constructing the lifted joint
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Figure 2: Runtimes for query answering

swering more complex compared to models without overlaps.
However, applicability of the approach increases immensely.
Additionally, compared to the ground case, the lifted version
gains dramatically in terms of runtime.

8 Conclusion and Outlook
We present a generalized approach to lifting GBNs, consist-
ing of constructing a lifted joint and lifted query answering
using the lifted joint. Whereas previous work lifts the induc-
tive construction approach of the full joint of a GBN only
for parameterized GBNs that do not have overlaps in the log-
vars, the presented approach works for parameterized GBNs
where no restrictions are placed on the logvars, which goes
beyond liftability results of discrete models, is however tied
to the continuous setting. Allowing overlaps, we significantly
extend the applicability of lifting in GBNs. We show that
constructing a lifted joint and answering queries on the lifted
joint leads to savings in terms of complexity. The experimen-
tal results show that this theoretical speed-up can also accom-
plished in an implementation with impressive results.

For future work, we look into lifting evidence handling as
well as query answering with parameterized queries as done
for discrete parameterized models [Taghipour et al., 2013;
Braun and Möller, 2018] targeting the O(NENQ) term. An-
other avenue concerns hybrid models where continuous and
discrete randvars simultaneously occur in the model.
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