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Abstract
Gaussian Bayesian networks are widely used for modeling behaviors of continuous random vari-
ables. Lifting exploits symmetries when dealing with large numbers of isomorphic random vari-
ables to support more compact representations and more efficient query answering. This paper
presents a lifted construction and representation of a joint distribution derived from a Gaussian
Bayesian network and a lifted query answering algorithm on the lifted joint distribution. To lift the
query answering, needed algebraic operations that work fully in the lifted space are developed. A
theoretical complexity analysis and experimental results show that both the lifted joint construction
and the lifted query answering significantly outperform their grounded counterparts.
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1. Introduction and Related Work

Modeling real-world systems from areas such as healthcare, bio-statistics, financial markets etc.
requires formalisms to be able to represent continuous variables and relationships among them. Of-
ten, these areas involve many objects and uncertainties. Over the last three decades, probabilistic
graphical models (PGMs) such as Bayesian Networks (BNs) have been used to model these random
variables (randvars) and the relationships between them (Koller et al., 2009). Being able to effi-
ciently answer queries to these models, also referred to as inference, has triggered a lot of research
(Zhang and Poole, 1996; Salmerón et al., 2018).

Poole (2003) introduces first-order probabilistic inference, which exploits symmetries in a model
by combining instances to reason with representatives. Exploiting these symmetries for isomorphic
randvars is called lifting. Lifted inference has been an active research field in the past years (Kim-
mig et al., 2015). For a discrete PGM, Taghipour et al. (2013) have developed a lifted variable
elimination algorithm and Braun and Möller (2016) have developed a lifted version of the junction
tree algorithm. In the continuous setting, Choi et al. (2010) have developed a lifted version for
variable elimination in factor graphs with Gaussian pairwise potentials. This paper applies the lift-
ing concept to Gaussian Bayesian networks (GBNs) which have been introduced by Shachter and
Kenley (1989) and widely applied across multiple fields (Cano et al., 2004; Froelich, 2015).

The paper contribution is threefold. First, we present an algorithm to construct a lifted represen-
tation of the joint distribution of a GBN. Second, we develop lifted algorithm for query answering
significantly outperforming its ground counterpart. Third, we derive algebraic operations that can
be fully computed in a lifted space, which can possibly be transferred to other use cases as well.
Additionally the lifted query answering in GBNs builds the basis for further lifted research handling
GBN based hybrid models (Lauritzen and Jensen, 2001; Madsen, 2008; Salmerón et al., 2018).

The remainder is structured as follows. Section 2 describes the preliminary definitions. Section
3 presents a lifted version for constructing the joint probability distribution of a GBN. Section 4
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develops algebraic operations to work in a lifted space, which are used in Section 5 to develop a
lifted query answering algorithm. Section 6 contains a complexity analysis, which is verified by an
experimental evaluation in Section 7. The conclusion and next steps are discussed in Section 8.

2. Preliminaries

This section covers the preliminaries for GBNs, parameterised models and queries. Throughout the
paper, we use bold symbols for vectors, sets, and matrices and thin symbols for scalars or elements.

2.1 Gaussian Bayesian Networks

Definition 1 A BN is a directed acyclic graph whose vertices represent N randvars Vi ∈ V with
i = 1, ..., N and whose edges U ⊂ (V,V) represent the dependencies between the randvars. The
set of parents Pa(Vi) of a randvar Vi ∈ V is defined as the set of randvars V k that have a directed
edge to Vi.

Definition 2 A GBN is a BN where all randvars are normally distributed. The edges represent
linear relationships between the randvars. The joint distribution can be factorized using the condi-
tional probability distributions of Vi with i = 1, ..., N given it parents Pa(Vi):

P (Vi|Pa(Vi)) ∼ N

µVi +
∑

Vk∈Pa(Vi)

βVk,Vi(vk − µVk), σ2Vi

 , (1)

where µVk and µVi are marginal means, σ2Vi is the conditional variance and βVk,Vi represents the
influence of parent Vk on its child Vi.

The joint probability distribution P (V) over the randvars V is a multivariate normal distribution

P (V) = N (µ,Σ) , (2)

where µ denotes the mean vector Σ denotes the covariance matrix.

2.2 Parameterised Models

The idea of parameterised models is to work solely with representatives for a group of isomorphic
randvars, sharing a probability distribution and parents. The isomorphic randvars are also called
instances of a group. Logical variables (logvars) identify the groups and parameterise randvars
to represent a set of isomorphic randvars. Logvars have a domain that contains the names of the
instances. The model of all individual randvars is called ground model. We follow the notation and
semantics introduced by Poole (2003), Taghipour et al. (2013) and Braun and Möller (2016).

Definition 3 Let V be a set of randvars and L be a set of logvars. A PRV X is a syntactical
construct of a randvar V ∈ V combined with a sequence of logvars L ⊆ L into V (L) to represent
a set of randvars. If L = ∅, the PRV is parameterless and constitutes a propositional randvar.
The domain D(L) = {L1, ..., LH} contains the instances of a logvar L. The domain of a sequence
of logvars is defined as D(L) = ×L∈LD(L). Grounding a PRV X results in a set of randvars
gr(X) = {VL1 , ..., VLH}.

Each PRV X has a range denoted as range(X) that containing possible values of X . Here, we
work with continuous normally distributed randvars resulting in the general range(X) = R.
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2.3 Queries

Definition 4 A query P (Q|E = e) consists of a query set Q ⊆ V, and a set of events {Eh =
eh}Oh=1 with eh ∈ R where Eh ∈ V and O is the number of observations.

Based on Definition 4, query answering in probabilistic graphical model allows for two different
types of queries. First a marginal probability distribution, i.e., P (Q), and second a a conditional
probability distribution given a set of events E = e, i.e., P (Q|E = e).

3. Lifted Joint Distribution

In this section, we describe a lifted algorithm for constructing a lifted representation of the joint
multivariate Gaussian distribution for a parameterised GBN.

3.1 Parameterised Gaussian Bayesian Networks

Instead of N ground randvars V, a parameterised GBN contains M PRVs X. Each PRV Xs ∈ X
with s = 1, ...,M has a PRV mean ηs and a variance λs. Each edge between a parent Xu and
a child Xs has a linear influence βXu,Xs that describes the linear relationship between the PRVs
analogously to the propositional GBN described in Section 2.1. Grounding a PRV Xs leads to a
set of ground randvars Vs = gr(Xs) with |Vs| = |D(Ls)| that have the same mean and variance.
Grounding a topologically ordered list of PRVs results in a topologically ordered list of ground
randvars because the parent-child relationships for each ground randvar are defined by the parent
child relationships of the corresponding PRV. If we consider a propositional random variable, we
can interpret it as a PRV with a logvar that has a domain size |D(L)| = 1. With that interpretation,
there are three different kinds of relationships between two PRVs Xs and Xt with t = 1, ...,M
possible:

No Parent: A PRV has no parent PRV resulting in no influencing factors on the PRV.
Disjoint logvar sets: The sequence of logvars Ls of the PRV Xs is disjoint from the sequence

of logvars Lt of the parent PRVXt. This results in a relation from every randvar in gr(Xs) to every
randvar in gr(Xt).

Overlapping logvar sets: The sequence of logvars Ls of the PRV Xs is overlapping with the
sequence of logvars Lt of the parent PRV Xt. Grounding the relation between the two PRVs Xs

and Xt sharing a sequence of logvars Ls ∩ Lt = Lshared results in a ground relation where each
child node is influenced by all |D(Lt \ Ls)| parents that share the same instantiation of the shared
logvars.

Overlaps result in a break of the symmetry structure, because not all random variables belong-
ing to the same PRV share the same set of parents anymore. The overlaps can be eliminated by
grounding the overlapping logvars and creating new PRVs. For the rest of the paper, we assume that
overlaps are eliminated. We denote lif(Vi) to identify a PRV that contains a specific ground rand-
var Vi, lif(V) to identify the PRV sequence for a sequence of ground randvars V, red(lif(V)) to
identify a set within a sequence of PRVs and one(Xs) to identify any single randvar of a PRV Xs.

3.2 Constructing a Lifted Joint

Shachter and Kenley (1989) have developed a recursive algorithm to convert a GBN into a multi-
variate normal distribution. This section describes a lifted version of the algorithm. If the number of
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isomorphic instances is high, the covariance matrix of the multivariate normal distribution is filled
with many duplicate values. We develop a lifted representation that allows to eliminate duplicates
for more efficient memory usage and faster calculations.

In the propositional case, the randvars are brought into a topological ordering. Then the co-
variance matrix between all randvars is created recursively. The covariance Cov(Vi, Vj) between
randvars Vi and Vj with i, j = 1, ..., N where i 6= j is symmetric, i.e.,Cov(Vi, Vj) = Cov(Vj , Vi),
and recursively calculated with

Cov(Vi, Vj) =
∑

Vk∈Pa(Vi)

Cov(Vj , Vk)βVk,Vj + δVi,Vjσ
2
Vi . (3)

where δVi,Vj is the Kronecker delta that is only one if Vi = Vj and otherwise zero.
Instead of looking into propositional randvars Vi and Vj , we are now looking at two sets of

equally behaving randvars Vs and randvars Vt grouped into PRVs Xs and Xt with s, t = 1, ...,M ,
respectively. Parents of Xs are denoted as Xu ∈ Pa(Xs). As described above, we can get the
number of randvars in PRVs by looking at the domain size of its logvars, e.g., |D(Ls)|. In short, we
denote the number of randvars of a PRV Xs as |Xs| = |D(Ls)|.

In the ground case, we would calculate the covariance between all |Xs| randvars Vs = gr(Xs)
and all |Xt| randvars Vt = gr(Xt). The set of parents Pa(Vi) for any randvar Vi contains for every
parent PRV Xu ∈ Pa(lif(Vi)), |Xu| isomorphic randvars. We can reformulate Equation 3 into

Cov(Vi, Vj) =
∑

Xu∈Pa(lif(Vi))

 ∑
Vk∈gr(Xu)

Cov(Vj , Vk)βVk,Vj

+ δVi,Vjσ
2
Vi . (4)

The sum in brackets is working on ground level. If the recursive Cov(Vj , Vk) was equal for all Vj
and Vk we could calculate it once and multiply it with the number of randvars |Xu| to replace the
sum. However, if Vj is equal to Vk, the recursive Cov(Vj , Vk) returns a different value caused by
the last term containing the Kronecker delta. This prevents us from multiplying Cov(Vj , Vk) with
the number of randvars |Xu| to replace the sum. To get rid of the sum in brackets nevertheless, we
differentiate between two cases.

Case 1: If the randvar Vj is no parent of the randvar Vi, the δVj ,Vkσ
2
Vj

in the recursive call
Cov(Vj , Vk) is always zero, resulting in a fully equal covariance Cov(Vj , Vk) for all Vl ∈ gr(Xk),
which reduces the second summation to a product between any covariance Cov(Vj , Vk) and the
number of parent randvars |Xk|:

Cov(Vi, Vj) =
∑

Xu∈Pa(lif(Vi))

Cov(Vj , one(Xu))|Xu|+ δVi,Vjσ
2
Vi . (5)

Case 2: If the randvar Vj is a parent of the randvar Vi, then exactly one randvar Vk ∈ gr(Xu)
will be equal to randvar Vj , which would result in a different covariance Cov(Vj , Vk). The key
is that if randvar Vj is a parent of randvar Vi, all other randvars gr(lif(Vj)) of the corresponding
PRV lif(Vj) are also parents of randvars gr(lif(Vi)). This means, independent of the specific
randvar in the covariance function, there will always be exactly one covariance Cov(Vj , Vk) where
the δVj ,Vkσ

2
Vj

is nonzero.
Based on the two cases, we can reformulate Equation 4 into

Cov(Vi, Vj) =
∑

Xu∈Pa(lif(Vi)

(
Cov(Vj , one(Xu))|Xu|+ δlif(Vj),Xu

σVj

)
βu,j + δVi,Vjσ

2
Vi . (6)
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Since the sum overXk ∈ Pa(lif(Vi)) is equal for all combinations between randvars gr(lif(Vi))
and randvars gr(lif(Vj)), we can calculate and store the sum separately as

CovL(Xs, Xt) =
∑

Xu∈Pa(Xs)

(CovL(Xt, Xu)|Xu|+ δ(Xt, Xu)λXt)βXt,Xu . (7)

The last term δVi,Vjσ
2
Vi

of Equation 6 only needs to be added if ground covariance between two
equal randvars Vi and Vi is calculated. We can use the PRV covariance CovL to calculate a ground
covariance with

Cov(Vi, Vj) = CovL(lif(Vi), lif(Vj)) + δ(Vi, Vj)λlif(Vi). (8)

Equations 7 and 8 show that we can calculate the ground covariance matrix only using the lifted
PRV covariance CovL and the PRV variances λXs . All PRV covariances CovL can be stored in a
M ×M -dimensional matrix ρ and the variances λXs can be stored into a M -dimensional vector λ.
With this information, we can create the ground covariance matrix anytime.

In addition to the covariance matrix, the multivariate Gaussian also needs a mean vector µ. The
ground mean-vector contains the means µi of all randvars Vi ∈ V. Since the randvars within a PRV
Xs have the same mean, the M -dimensional PRV mean vector η is a lifted version of µ. We get the
mean for a ground randvar Vi by expanding the lifted mean vector η as µVi = ηlif(Vi).

Summarized, to store all information of the lifted joint distribution over M PRVs X1, ..., XM ,
we need an M -dimensional lifted mean vector η, an M ×M -dimensional PRV covariance matrix
ρ, an M -dimensional variance correction vector λ and an M -dimensional cardinality vector τ .

4. Working with Liftable Matrices

In this section, we develop a formal framework for working with the lifted joint distribution. We
start by formalizing the structure of ground and lifted covariance matrices. Afterwards, we discuss
how to perform matrix operations like matrix multiplication and matrix inversion in the lifted space.

4.1 Liftable Matrices

Definition 5 A symmetric N ×N -dimensional matrix

Z =

B1,1 . . . B1,M
...

. . .
...

BM,1 . . . BM,M

 (9)

has a liftable structure if it consists of M ×M blocks Bs,t, with s, t = 1, ...,M , where each block
on the diagonal of Z is a square matrix that followsBs,s = ρs,sJ

τs×τs + λsI
τs×τs , and each block

on the off-diagonals of Z followsBs,t = ρs,tJ
τs×τt , for s 6= t, where J is the all-ones matrix, I the

identify matrix and, λ1, ...λM τ1, ...τM and ρ1,1, ...ρM,M are scalars.

In the following, we call a block with the on-diagonal structure a OnD block and a block with
the off-diagonal structure a OffD block. Bringing this into relation with the PRVs from the previous
section, each block Bs,t can represent the ground covariance between the randvars in gr(Xs) and
in gr(Xt). Definition 5 shows that each blockBs,t has a lifted representation by a PRV covariance
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ρs,t and if the block is a OnD block, a variance λs. The information of a matrix with liftable
structure can be stored in a M ×M -dimensional matrix denoted as ρ, an M -dimensional vector λ,
and an M -dimensional vector τ as done in the previous section for the lifted representation of the
covariance matrix. Consequently, a row of OffD blocks can be represented in a lifted way by a row
of PRV covariances ρ and a submatrix of Z by a submatrix of ρ and a subvector of λ. Getting the
N ×N -dimensional ground covariance matrix can be done by inserting the values from ρ, λ and τ
into the block generating equations of Definition 5.

As a simplification, we denote Λ = dia(λ), where dia(λ) contains the scalar λs at position
Λs,s and zeroes everywhere else. We can rewrite the two block equations from Definition 5 into
BXs,Xt = ρs,tJ + Λs,tI , because the scalar Λs,t is zero for s 6= t.

4.2 Lifted Matrix Multiplication

Lifted storing a matrix with a liftable structure alone is not enough for lifted query answering. We
also need to perform calculations without grounding the stored matrix, as we will see in the next
section. Basic matrix algebra shows that adding or subtracting block matrices Z1 and Z2 with
matching dimensions can be done by adding and subtracting their matrices ρ1 and ρ2 and vectors
λ1 and λ2. In the following, we work on lifted matrix multiplication.

Lemma 6 LetBs,t andBt,w with s, t, w = 1, ...,M be two blocks of the block matrix Z, then it is

Bs,t ·Bt,w = xJτs×τt + yIτt×τw , (10)

where x and y can be calculated only using the lifted representation by

x = ρs,tρt,wτt + ρs,tΛt,w + ρt,wΛs,t and y = Λs,tΛt,w. (11)

Proof We use the rule for multiplying all-ones matrices JG×HJH×K = HJG×K , where G, H and
K are scalars that define the matrix dimensions, in the multiplication of the two blocks

Bs,t ·Bt,w = (ρs,tJ
τs×τt + Λs,tI

τs×τt) · (ρt,wJτt×τw + Λt,wI
τt×τw)

= ρs,tρt,wτtJ
τs×τw + ρs,tΛt,wJ

τs×τw + ρt,wΛs,tJ
τs×τw + Λs,tΛt,wI

τs×τw

= (ρs,tρt,wτt + ρs,tΛt,w)Jτs×τw + Λs,tΛt,wI
τs×τw .

(12)

The results can be stored in a lifted way by storing the values of x and y of the new block. Based
on Lemma 6, the value y of the result is nonzero only if two OnD structured blocks are multiplied
and is zero if one of the multiplied blocks is a OffD structured block. In the algorithm developed in
the next section, we need operations that work on multiple blocks in a lifted way.

Lemma 7 For s, t = 1, ...,M , let Bs,s be an OnD structured τs × τs-dimensional block of Z,
Bs+1:M,s be a column of blocks with

Bs+1:M,s =

Bs+1,s
...

BM,s

 (13)
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andBs:M,s:M be a block matrix with

Bs:M,s:M =

Bs,s . . . Bs,M
...

. . .
...

BM,s . . . BM,M

 . (14)

We can perform the multiplication of (i) a single block with a row or column of blocks (Bs+1:M,s ·
Bs,s), (ii) a row of blocks with a column blocks (Bs+1:M,s ·BT

s+1:M,s) and (iii) a row or column of
blocks with a block matrix (Bs+1:M,s ·Bs:M,s:M ) in lifted space.

Proof For (i) with block matrix multiplication and Lemma 6 it is

Bs+1:M,s ·Bs,s =

Bs+1,sBs,s
...

BM,sBs,s

 =

(ρs+1,sρs,sτs + ρs+1,sΛs,s)J
...

(ρM,sρs,sτs + ρM,sΛs,s)J

 . (15)

The output column of blocks can be stored using a column vector ρresult1 which can be directly
calculated by ρresult1 = ρs+1:M,sρs,sτs + ρs+1:M,sΛs,s. Analogously, we can calculate the multi-
plication of a row vector with a block in lifted space. For (ii) it is

Bs+1:M,s ·BT
s+1:M,s =

Bs+1,sBs,s+1 . . . Bs+1,sBs,M
...

. . .
...

BM,sBs,s+1 . . . BM,sBs,M

 , (16)

which can analogously be stored in matrix ρresult2 and calculated in a lifted way by ρresult2 =
ρs+1:M,sρ

T
s+1:M,sτs. For (iii) it is

Bs+1:M,s+1:M ·Bs+1:M,s =


∑M

w=s+1Bs+1,wBw,s
...∑M

w=s+1BM,wBw,s

 =


(∑M

w=i+1 ρs+1,wρw,sτw + λs+1ρs+1,s

)
J

...(∑M
w=i+1 ρM,wρw,sτw + λMρM,s

)
J

 (17)

which can be calculated and stored in a column vector in a lifted way. ForBs+1:M,sT ·Bs+1:M,s+1:M

it is analogous.

4.3 Lifted Matrix Inversion

In this section we describe an analytic and lifted formula for inverting a OnD structured matrix
analogue to Henderson and Searle (1981).

Lemma 8 Let L be an G×G OnD structured matrix of the form L = aJ + bI . Then the inverse
of L can be calculated analytically by L−1 = xJ + yI , where

x = − a

b(aG+ b)
and y =

1

b
. (18)
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Proof To prove this lemma, we follow the definition of an inverseLL−1 = I . Solving the equation
LL−1 = (aJ + bI)(xJ + yI) = I is equivalent to solving the linear equation system (LES)

(a+ b)(x+ y) + (G− 1)ax = 1, (19)

(a+ b)x+ a(x+ y) + (G− 2)ax = 0. (20)

Solving the LES for x and y results in Equation 18.

5. Lifted Query Answering

This section covers query answering using the lifted version of the joint distribution.

5.1 Lifted Answering for a Marginal Query

As defined in Section 2.3 a marginal query P (Q) is a query without evidence. Obtaining a marginal
distribution of a multivariate normal distribution is trivial. One can simply select the means µQ

and covariance matrix ΣQQ that are corresponding to the queried randvars and insert them into the
probability distribution P (Q) = N (µQ; ΣQQ). For the lifted case, we select the means µQ and
covariance matrix ΣQQ of the corresponding PRVs as described in Section 3.1 by

µQ = ηlif(Q) and ΣQQ = ρlif(Q),lif(Q) + dia(λlif(Q)). (21)

5.2 Lifted Answering for a Conditional Query

In the propositional case, calculating a conditional probability distribution P (Q|E = e) for a
multivariate Gaussian follows

µ∗ = µQ + ΣQEΣ−1EE(e− µE) and Σ∗ = ΣQQ + ΣQEΣ−1EEΣEQ. (22)

The distribution N (µ∗,Σ∗) is the query answer (Eaton, 1983). Matrix inversion and matrix mul-
tiplication are driving the complexity of the query answering with evidence. Since the ground
covariance matrix Σ has a liftable structure also ΣEE has a liftable structure and will be stored in a
lifted way. For this section the ρE , λE and τE only contain values for PRVs that have randvars in
the evidence. τE contains the number of randvars for each PRV in the evidence. We can partition
the O × O ground matrix ΣEE , where O is the number of observed variables, into K ×K blocks
Bq,r where q, r = 1, ...,K based on the structure of the K PRVs in the evidence as detailed in
Definition 5.

Lemma 8 allows us to invert a single block on the diagonal but not the whole matrix ΣEE . To
break down the inversion we use the block matrix inversion formula (Bernstein, 2009)[

Ã B̃

C̃ D̃

]−1
=

[
O P
Q R

]
=

[
Ã
−1

+ Ã
−1

B̃F̃−1C̃Ã
−1 −Ã−1B̃F̃−1

−F̃−1C̃Ã
−1

F̃−1

]
, where F̃ = D̃− C̃Ã

−1
B̃. (23)

To get the inverted covariance matrix Σ−1EE we use lifted matrix multiplication and the block
matrix inversion recursively. In the following, we describe the recursive block matrix inversion.
Pseudocode can be found in Algorithm 1.

8



LIFTED QUERY ANSWERING IN GAUSSIAN BAYESIAN NETWORKS

Step 1: The input for the function is the lifted representation ρ, λ and τ of a liftable matrix Z.
In the first call the (the first recursion step) it is ρE , λE and τE representing ΣEE . If the matrix ρ
has only one element, Z would consist of only one block in OnD structure and we can use Lemma
8 to calculate the lifted representation of Z−1, where Z−1 is again OnD structured. The resulting
ρres, λres and τ are returned and the function call terminates. If ρ has more than one element the
algorithm continues.

Step 2: The grounded matrix Z would be split into four blocks based on Equation 23. These
four 4 blocks are constructed of the K ×K (where K is decreased by one in each recursion step)
blocks forming the matrixZ. Matrix Ã consists of the first block (Ã = B1,1, ρÃ = ρ1,1, λÃ = λ1)
the rest is constructed analogously.

Step 3: The inversion function is called for the lifted representation of Ã and Step 1 will directly
return the lifted inverse. The lifted version ρF̃ , λF̃ and τ F̃ of matrix F̃ can be calculated using the
lifted multiplication rules from Lemma 7 where λF̃ = λD̃ and τ F̃ = τ D̃. The inversion algorithm
is recursively called for ρF̃ , λF̃ and τ F̃ .

Step 4: Once the recursive call returns the lifted inverse for ρF̃ , λF̃ and τ F̃ , the blocks the
lifted representations for O, P, Q and R can be calculated using Lemma 7. Based on Equation 23,
the four lifted representations of O, P, Q and R are combined into a ρZ−1 , λZ−1 and τZ−1 and
returned.

With Lemma 7, the conditional covariance matrix Σ∗ from Equation 22 can be calculated fully
lifted using the result of the recursive lifted matrix inversion. For the conditional mean µ∗, we need
to calculate the observed deviation from the mean (e− µE) on ground level, because the evidence
can be different for the observed ground randvars. Even if the evidence is different across randvars
it is multiplied with the same factor because ΣQEΣ−1EE is equal for all ground randvars belonging
to the same PRV. We can group the evidence e by the K PRVs XE = red(lif(E)) and convert
the ground vector in a K-dimensional vector

∑
Eh∈gr(XE

1 ) eh
...∑

Eh∈gr(XE
K) eh

− η1:K (24)

that can be used by the lifted multiplication rules to calculate the conditional mean µ∗. The sum-
mation is the only operation that needs to happen on ground level.

6. Complexity Analysis

This section covers the run-time and space complexity of creating the joint distribution and of an-
swering conditional probability queries. We have N randvars in the GBN combined into M PRVs.

6.1 Complexity for Constructing the Joint

Constructing the ground version of the joint probability distribution calculates theN×N -dimensional
covariance matrix by iterating in two loops over the randvars. In each step, the covariance between
two randvars Vi and Vj is calculated by taking into account all parents of either Vi or Vj depending
on which is first in a topological ordering. If we denote T as the average number of parents in the
GBN, we get a time complexity of O(N2T ). Depending on the network type, T can be dependent
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Algorithm 1 Lifted recursive block matrix inversion
1: procedure LIFTEDINVERSION(ρ,λ, τ ) . lifted representation as an input
2: if λ.size = 1 then
3: λinv, ρinv ← 1/λ,−ρ/(λ(ρτ + λ)) . here, ρ, λ and τ are scalars
4: return ρinv, λinv, τ
5: ρÃ, λÃ, τÃ ← ρ1,1, λ1, τ1
6: ρB̃,ρC̃ ← ρ1,2:K ,ρ2:K,1
7: ρD̃,λD̃, τ D̃ ← ρ2:K,2:K ,λ2:K , τ 2:K

8: ρ
Ã

−1 , λ
Ã

−1 , τ
Ã

−1 ← LIFTEDINVERSION(ρÃ, λÃ, τÃ) . recursive Call
9: ρF̃ ← ρD̃ − τÃ(τÃρÃ−1 + λ

Ã
−1)ρC̃ρB̃

10: λF̃ , τ f̃ ← λD̃, τ D̃
11: ρ

F̃
−1 ,λ

F̃
−1 , τ

F̃
−1 ← LIFTEDINVERSION(ρF̃ ,λF̃ , τ F̃ ) . recursive Call

12: ρO,ρP ,ρQ,ρR ← CALCULATELIFTED

13: λinv,ρinv ← STACK(λ
Ã

−1 ,λ
F̃

−1), STACK(ρO,ρP ,ρQ,ρR)
14: return ρinv,λinv, τ . lifted representation as an output

or independent of N . Resulting in a lower bound of Ω(N2) and a upper bound O(N3). The space
complexity of storing the covariance matrix Σ and the mean vector µ is O(N2).

In the presented lifted version, the two loops are depending on M to calculate the M ×M -
dimensional PRV covariance ρ. The calculation of the individual covariances ρs,t uses the number
of randvars as a scalar for multiplication. The avg. number of parent PRVs is driving the complexity
analogously to the ground case resulting in a lower bound of Ω(M2) and a upper bound O(M3).
The space complexity is in O(M2). Summarized, the space and time complexity for constructing
the lifted joint distribution is solely dependent on the number of PRVs.

6.2 Complexity for Conditional Query Answering

We denote NQ as the number of querried randvars and NE as the number of evidence randvars.
Furthermore we denote MQ and ME as the number of PRVs involved in the NQ and NE rand-
vars respectively. The matrix multiplication and inversion are driving the complexity of the query
answering. We are aware that there are matrix inversion and multiplication algorithms that have
a run-time complexity of less than O(N3) but for simplicity and without changing the overall ar-
gumentation we take O(N3) as an upper bound (Le Gall, 2014). In the ground case, the matrix
inversion has a complexity of O(N3

E) and the matrix multiplication a complexity of O(N2
ENQ).

If the query contains more query variables, the multiplication dominates the complexity and if the
query contains more evidence the inversion dominates the complexity.

In the lifted case, the matrix inversion is constant for one block but the algorithm requires
2(ME − 1) recursive calls to invert ΣEE resulting in a linear complexity of O(ME). The lifted
matrix multiplication within the recursive calls has a upper bound of O(M3

E) because there will
be no matrix multiplication involving bigger than ME ×ME-dimensional matrices resulting in a
runtime complexity for the matrix inversion of O(M4

E). Analogously to the ground case, the matrix
multiplications are in O(M2

EMQ). The final calculation for the conditional mean vector µ∗ involve
the summation a ground version of the evidence vector e resulting a complexity of O(NEMQ). If
NE >> ME ,MQ, which is often the case when working with lifted models, the complexity of

10
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Figure 1: Eval. for constructing the joint dis.
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Figure 2: Eval. for query answering

calculating the µ∗-vector dominates. But instead of working in a cubic complexity as in the ground
case, we reduced it to a linear complexity of NE . If NE , ME and MQ are in the same order of
magnitude, the lifted version stays in a complexity of O(M4

E) or O(M2
EMQ).

7. Evaluation

Summarized, we verify the theoretical complexity analysis in the experiments. First, we evaluate
the lifted construction of the joint distribution described in Section 3. Second, we evaluate the con-
ditional query answering as a whole including the lifted matrix inversion. For each step, we set up
a experiment containing 4 PRVs with exponentially increasing number of ground randvars (from 2
to 227). For the conditional query answering, we introduced evidence for half of the randvars and
queried the other half. In the ground case we stopped if the runtime got extraordinary high. The re-
sults can be found in Figures 1 and 2. For both benchmarks, the lifted version is significantly faster.
The plots show that the lifted construction of the joint distribution is independent of the number of
randvars within the PRVs. Answering a conditional probability query is not fully independent of
the number of randvars. As described in the previous section the number of evidence variables has a
linear influence on the runtime. The influence can be seen in Figure 2 when the number of randvars
is getting very high.

8. Conclusion and Outlook

In this paper, we propose a new lifted version of an algorithm for constructing a joint multivariate
Gaussian distribution for a given Gaussian Bayesian network and a new exact lifted querying al-
gorithm using the lifted representation of the multivariate Gaussian distribution. Additionally, we
develop algebraic operations working in the lifted space that can possibly be transferred to other use
cases as well. The lifted algorithms both significantly outperform existing ground level algorithms,
which is proven theoretically and verified in a experimental evaluation. Performance increases can
enable use cases from various fields that involve modeling the behavior for large numbers contin-
uous random variables. Developing similar algorithms to handle hybrid Bayesian networks con-
taining both discrete and continuous random variables and preventing the grounding of overlapping
logvar sequences are promising directions for future research.
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