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Abstract—Gaussian mixture models are widely used in a
diverse range of research fields. If the number of components
and dimensions grow high, the computational costs for answering
queries become unreasonably high for practical use. Therefore
approximation approaches are necessary to make complex Gaus-
sian mixture models more usable. The need for approximation
approaches is also driven by the relatively recent representations
that theoretically allow unlimited number of mixture compo-
nents (e.g. nonparametric Bayesian networks or infinite mixture
models). In this paper we introduce an approximate inference
algorithm that splits the existing algorithm for query answering
into two steps and uses the knowledge from the first step to reduce
unnecessary calculations in the second step while maintaining
a defined error bound. In highly complex mixture models we
observed significant time savings even with low error bounds.

Index Terms—Gaussian mixture models, query answering,
conditional probability, inference, approximation

I. INTRODUCTION

Gaussian Mixture models (GMMs) have been used very
widely for modeling complex probabilistic distributions across
diverse fields including agriculture, medicine, bioinformatics,
etc. [1]. If the dimensions of the probability distribution and
number of mixture components are large, the computational
costs grow. In nonparametric approaches the number of com-
ponents is not limited before learning the model [2] allowing
the mixture to grow in its number of components dependent on
the data that is fed into the model. Examples for these models
are infinite GMMs [2] and nonparametric Bayesian networks
[3], [4]. These nonparametric models have been used more
widely recently and several use cases from different fields have
been identified [3]. Existing query answering algorithms that
work along the semantics of the query language just perform
calculations for all mixture models separately which works
very well for models with low dimensionality and low number
of components [5]. But if the model complexity grows the
computational costs increase rapidly.

In this paper we describe an approach to speed-up
the query answering in GMMs with focus on calculating
conditional probability distributions. The approach uses
the fact that the posterior weights of mixture components
can be calculated with relatively little costs and combines
this with a modified version of a quick-select algorithm
to identify the most important mixture components for the

posterior distribution. The relatively costly step of calculating
a posterior distribution for each mixture is only performed
on the priority components, which significantly reduces
the overall runtime. In situations with a high numbers of
components and dimensions the approximate approach is up
to 40 times faster while maintaining a low error bound.

The remainder of this paper has following structure. We
begin by introducing GMMs and explain how highly complex
mixture models can emerge. After defining the query language
we explain how the queries can be answered in GMMs naively.
Afterwards we introduce our approximate approach followed
by a detailed complexity comparison and an evaluation. Our
work is concluded by an evaluation and an outlook to future
work.

II. PRELIMINARIES

This section introduces GMMs and explains how highly
complex GMMs can emerge. For further information on mix-
ture models or Gaussian distribution see for example [6].

A. Gaussian Mixture Models

The distribution of a single Gaussian random Variable Xi

follows the probability density function:

fxi(x) =
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where µ is the mean and σ2 the standard deviation. We write
more simply

Xi ∼ N
(
µ, σ2

)
(2)

The D-dimensional multivariate Gaussian distribution over
the set of d random variables X follows the multivariate
probability density function:
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1

(2π)
n
2 |Σ| 12

exp
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2
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)
(3)

with µ being a D-dimensional mean vector and Σ being a
D×D-dimensional covariance matrix. We write more simply
again

X ∼ N(µ,Σ) (4)



Gaussian distributions are very easy to use for calculations
because they are closed under multiplication and the integral
can be calculated analytically. Both characteristics are
useful for working with probabilities. Unfortunately only
very few phenomena can be represented well enough with
a pure Gaussian distribution. To keep some of the nice
features of Gaussian distributions and gain flexibility in the
representation, mixtures of Gaussians have been developed.
A mixture of multivariate Gaussians can approximate any
density function [7].

A mixture model M is defined as a set of K probability
distributionsP (X|θk) and K corresponding weights w(k):

M =
(
{P (X|θk)}K1 , {w(k)}K1

)
(5)

where θk includes the parameters of the corresponding prob-
ability distribution, w(k) ≥ 0 and

K∑
k=1

w(k) = 1. (6)

Each pair of probability distribution and weight is called
a mixture component or just component. A mixture model
describes a joint probability distribution of the following form:

P (X) =

K∑
k=1

w(k)P (X|θk) (7)

Each component can be interpreted as an expert whose
weight is a measure for his relative ”expertise” [8]. Since the
weights sum-up to one the weights basically form a discrete
probability distribution over the parameters. A mixture model
is called a GMM if all distributions P (X|θk) are Gaussians
(3). In a GMM each parameter set θk contains a µk and a σk.

B. Motivating High Complexity Mixtures

The complexity of GMMs is driven by the number of
dimensions and the number of components. The number of
components in a mixture model is often fixed but nonpara-
metric models are used to make the number of components
dependent on the amount of data that is fed into the model
resulting in possibly very high number of components [2]. One
example for high dimensions in models are medical diagnosis
networks. The famous Computer-based Patient Case Simu-
lation probabilistic model (CPCS-PM) has 422 dimensions
and the Quick Medical Reference Bayesian Network (QMR-
BN) even has 4040 dimesions [9], [10]. Some types of these
network models can be reduced to GMMs, which makes our
work applicable in these fields as well [11]. Example types
that can be reduced to GMMs are Mixtures of Gaussian
Bayesian networks or nonparametric Bayesian networks [4].
In nonparametric Bayesian networks both high number of
dimensions and high number of components can emerge.
In general a high number of mixtures which can be interpreted
as experts in their field allow for very specific ”expert opin-
ions” in the model. Query answering in these mixtures can be
interpreted as asking all experts based on a certain evidence.

Since the knowledge of the experts depends on the evidence,
for different evidences we should ask different experts (having
a broken leg no one would ask a dentist). An approximate
algorithm that does not wait for the full answer of every expert
but can anticipate which expert’s opinions are needed for the
specific evidence is a contribution to make highly complex
GMMs more usable.

III. QUERY LANGUAGE

At the beginning of this section we describe the syntax and
semantic of our query language. Afterwards we explain why
a query answering algorithm that naively follows the semantic
is not efficient.

A. Query Syntax

A query on a GMM M contains a set of queried variables
XQ ⊆ X and a set of measured variables XE = xE

where XE ⊆ X \ XQ. The syntax for a query is on a
GMM M is PM (XQ|XE = xE). For brevity, we typically
leave out the M and write xE without the equation. The
resulting probability distribution of an answered query is still
represented by a GMM. It is called posterior or conditional
probability distribution. If XE is an empty set the result is
called marginal distribution.

B. Query Semantic

The semantic behind the query is a sum of all conditional
distributions of M :

P (XQ|xE) =

K∑
k=1

w(k|xE)P (XQ|xE , θk) (8)

Calculating the conditional distribution P (XQ|xE , θk) of a
multivariate Gaussian follows some basic rules, for a proof
see [6].

XQ|xE ∼ N(µQ|E ; ΣQ|E) (9)

where

µQ|E = µQ + ΣQ,EΣ−1E,E(xE − µE) (10)

ΣQ|E = ΣQ,Q − ΣQ,EΣ−1E,EΣE,Q (11)

According to the Bayes rule, to calculate the posterior
weight w(k|xE) we calculate the likelihood given the obser-
vation multiplied with the prior and divided by the overall
likelihood of observing xE :

w(k|xE) =
w(k)P (xE |k)

P (xE)
(12)

The fact that not only the component posterior distributions
change but also the weights of posterior mixture change
can be a counter intuitive. The intuition behind is that each
component has an area where it is knowledgeable. It is also
called a mixture of experts [8]. The evidence therefore has an
impact on the probability of a component to be an ”expert”
for that case.



Algorithm 1 Recursive select top-L elements function
1: procedure SELECTCOMPONENTS(list, errorBound, sC) . sC list used to save the selected components
2: size← list.size
3: pivot← PARTITION(list, 0, size− 1) . partitions the list and returns the pivot element
4: partSum←SUM(list[pivot : size]) . sums the right part of the partitioned list
5: if partSum < errorBound then
6: ADD(sC, list[pivot : size]) . adds the right part to the selected components
7: newBound← errorBound− partSum
8: SELECTCOMPONENTS(list[0 : pivot], newBound, sC) . recursive call on left partition with new bound
9: else

10: if pivot 6= 0 then
11: SELECTCOMPONENTS(list[pivot : size], errorBound, sC) . recursive call on right partition with old bound
12: else
13: ADD(sC, list[pivot : size]) . adds the final component and terminates

C. Query Answering

As apparent in (11) the calculation of the conditional
covariance matrix involves matrix inversion and matrix
multiplication. Both computations are polynomial and thus
are driving the complexity of the query answering algorithm
[12]. A naive query answering along the semantic just repeats
the inference steps for each mixture component. The result
is that execution time grows linearly with the number of
components and polynomially with the number of dimensions
which is generating a need for faster approximate approaches.
We will revisit the runtime complexity of the naive approach
as a baseline in the complexity analysis in Section 5.

IV. APPROXIMATION APPROACH

The idea of our approximation approach to improve the
query answering runtime is to divide the calculation in (8)
into two steps. First, we calculate the posterior weights for
all components based on (12). Second, we use these posterior
weights to prioritize components based on an allowed error
bound and only calculate the conditional distribution based
on (9), (10) and (11) for the prioritized components. As an
intuition we can think of our first step as an approximation
of the expert knowledge given some evidence. In the second
step we ”only ask experts and wait for their answers if they
contribute enough to the final answer”. In this section we first
detail out our concrete algorithm and show that a predefined
error bound is met.

A. Detailed Algorithm

We are given a GMM with K components and D dimen-
sions. The random variables are split into queried variables
XQ and measured variables XE . A given error bound ε
specifies the desired accuracy of the approximation.

1) Step 1: Calculate posterior weights: To calculate the
posterior weights, the evidence xE and the priors w(k) are put
in (12). This calculation is performed for all components and
the result is an unsorted list that contains all posterior weights.
Because of the conjugate nature of the weight distribution, all
the posterior weights still sum-up to one, see (6).

2) Step 2: Component selection: The goal is to select a
subset KL of all mixture components such that the difference
between the conditional probability distribution of of the
subset KL (the approximation) and the exact conditional
probability distribution of the whole mixture (8) is smaller
than the error bound ε in any point.

∑
k∈{1,...,K}

w(k|xE)P (XQ|xE , θk)−
∑

k∈KL

w(k|xE)P (XQ|xE , θk) ≤ ε (13)

To save runtime the size of subset should be as small as
possible. Unfortunately a minimization of the size of KL

would involve the computation of the conditional probability
distributions of all components which would result in the
exact solution anyhow. To save runtime we developed a
method that selects a subset KL that fulfills (13) without
spending too much computations. Our algorithm selects the
top-L components whose sum of weights is at least 1 − ε.
We detail-out our algorithm first and describe in the next
section why the error bound condition (13) holds. A naive
approach would sort the whole list and then would select the
top-L components until their sum reaches 1 − ε but would
need on average O(Klog(K)) time. Our approach is similar
to the Quick-Selection algorithm [13] and also has O(K)
average runtime (for pseudocode of the recursive procedure
see Algorithm 1). One element of the unsorted list is selected
as a pivot element that is used to partition the list. Afterwards
the right (bigger) part is summed-up. If this sum is smaller than
the needed accuracy, the complete right part is selected and
only the left part needs to be checked further. For the left part
the same partitioning is done again and the SelectionFunction
in called recursively with a new accuracy decreased by the
sum of the right part. If the sum of the right part is bigger,
the left part can be ignored and the right part need to be
checked further. The recursive process starts again but this time
with an unchanged needed accuracy because no elements have
been selected yet. The quick-select algorithm has an average
runtime of O(K) as long as the pivot is not systematically
chosen badly because then each partition step reduces the list
size by a fraction which results in linear runtime [13]. The



number of element swaps in the partitioning process is smaller
or equal to the number of components in the larger partition.
The same is true for the additional summing-up that is needed
by our selection algorithm. Since both have the same upper
bound we keep the O(K).

3) Step 3: Completing the posterior: In the last step the
posterior probability distribution of each of the L selected
mixture components is calculated based on the (8), (10)
and (11). The new posterior mixture with L components
represents the answer of the conditional probability query.

The next section discusses the error bound in more detail
and explains why it holds.

B. Error Bound

We need to show that our approximation fulfills the defined
error bound (13). We can shorten (13) by substracting all
components in the selected set KL which leaves us with
components that are not selected:∑

k∈{1,...,K}\KL

w(k|xE)P (XQ|xE , θk) ≤ ε (14)

We know that the sum of all the component weights is equal
to one (6) and (12). The sum of the weights of the selected
components is bigger than 1 − ε resulting in the sum of the
ignored component weights is lower than ε:∑

k∈{1,...,K}\KL

w(k|xE) ≤ ε (15)

Because P (XQ|xE , θk) is a probability function, its value
is always lower or equal to one resulting in

w(k|xE)P (XQ|xE , θk) ≤ w(k|xE). (16)

Combining 14, (15) and (16) results in:∑
k∈{1,...,K}\KL

w(k|xE)P (XQ|xE , θk) ≤
∑

k∈{1,...,K}\KL

w(k|xE) ≤ ε (17)

This shows us that (13) and (14) are always true if we select
the components accordingly to our algorithm which means that
we stay in the defined error bound ε.

V. COMPLEXITY

We define
• D as the number of random variables X
• C as the number of measured variables XE

• K as the number of mixture components
• L as the number of selected components by the approx-

imation algorithm
• L

K = λ as the component utilization factor (λ = 1 means
that all components need to be used in the posterior to
meet the error bound)

In the naive implementation we have to calculate K times a
posterior weight and K times a posterior probability. For the
calculation of the posterior weights matrix two multiplications
of two matrices with the dimensions C ×C and an inversion
of a C × C have to be performed (see (12) and (3)). The

runtime of both operation grows polynomial and the function
that describes all necessary operations is in Ω(C2) and O(C3)
resulting in O(KC3) complexity for calculating the posterior
weights for all components [12]. To calculate the posterior
probability distribution for each component based on (10)
and (11) we need to perform a C × C matrix inversion
and a matrix multiplication involving two (D − C) × C
matrices (one being transposed) which results in a function
in O(K(D − C)3) to describe all necessary operations. In a
realistic setup it is often D � C, resulting in a domination
by O

(
K(D)3

)
.

In the approximate algorithm the first step is identical and
therefore in the complexity of O(KC3). The second step
generates additional runtime. As described in Section 4.1
selecting the top L components that meet our error bound
can be done in O(K). The function describing the last step
is in O(λK(D − C)3) because only L of the K components
need to be used. Comparing the two approaches shows that
we have runtime savings if:

K + λK(D − C)3 ≤ K(D − C)3 (18)

1 + λ(D − C)3 ≤ (D − C)3 (19)

1

(D − C)3
+ λ ≤ 1 (20)

λ ≤ 1− 1

(D − C)3
(21)

Equation (21) shows that the utilization factor λ can be nearly
one for high D − C. This means that we even get a runtime
improvement if we use most of the components and the
number of dimensions is not too small. For complex mixture
structures used in practice this will be always true. In the next
section we look at the actual time savings of the approximation
approach.

Fig. 1. Runtime [s] (y-axis) for different list sizes [#] (x-axis)



TABLE I
NAIVE ALGORITHM - AVERAGE RUNTIME OF 10 RUNS EACH IN SECONDS

(ERROR BOUND CHOSEN TO BE 0.01)

Components Dimensions
10 50 250 1250

10 0.003 0.003 0.008 0.369
50 0.014 0.013 0.035 1.778
250 0.064 0.066 0.166 8.847
1250 0.315 0.337 0.836 869.411

TABLE II
APPROX. ALGORITHM - AVERAGE RUNTIME OF 10 RUNS EACH IN

SECONDS (ERROR BOUND CHOSEN TO BE 0.01)

Components Dimensions
10 50 250 1250

10 0.002 0.002 0.003 0.066
50 0.007 0.007 0.010 0.120
250 0.032 0.033 0.047 0.619
1250 0.161 0.165 0.231 20.740

TABLE III
AVERAGE TIME SAVING FACTOR OF APPROX. VS NAIVE ALGORITHM

(ERROR BOUND CHOSEN TO BE 0.01)

Components Dimensions
10 50 250 1250

10 1.7 1.4 2.4 5.6
50 2.1 1.9 3.4 14.9
250 2.0 2.0 3.5 14.3
1250 2.0 2.0 3.6 41.9

TABLE IV
AVERAGE TIME SAVING FACTOR OF APPROX. VS NAIVE ALGORITHM

(ERROR BOUND CHOSEN TO BE 0.05)

Components Dimensions
10 50 250 1250

10 2.1 1.2 1.9 6.7
50 1.9 2.0 3.3 12.8
250 1.9 2.1 3.5 19.6
1250 1.9 2.1 3.7 34.6

VI. EVALUATION
Two evaluations have been performed. Evaluation 1 focuses

on the linear runtime of the top-L component selection and
Evaluation 2 focuses on the time savings of the whole ap-
proximation algorithm compared to the naive implementation.

A. Evaluation 1: Top-L Selection

We evaluate the top-L algorithm with weight lists of dif-
ferent sizes. To get realistic test data, the lists are generated
by a Dirichlet process, a process that is also often used to
generate mixture models [14]. The evaluation is performed
with different values for the α-parameter of the Dirichlet
process. The α-parameter is responsible for the layout of
the distribution. A high α-parameter results in a more peaky
distribution which means that few components have high
weights and others small weights. For each combination of
number of components and α-parameter we perform 200 runs
and take the average runtime.

TABLE V
AVERAGE TIME SAVING FACTOR OF APPROX. VS NAIVE ALGORITHM

(ERROR BOUND CHOSEN TO BE 0.1)

Components Dimensions
10 50 250 1250

10 1.5 1.6 2.5 7.3
50 1.9 2.0 3.5 13.9
250 1.9 2.1 3.7 18.0
1250 2.0 2.1 3.7 36.2

TABLE VI
AVERAGE NUMBER OF USED COMPONENTS (ERROR BOUND CHOSEN TO BE

0.1)

Components Dimensions
10 50 250 1250

10 1.2 2 1 1.1
50 1.8 1.7 1.9 1.6
250 5.3 4.2 5.1 3.1
1250 15.6 16.7 16.8 19.3

TABLE VII
AVERAGE NUMBER OF USED COMPONENTS (ERROR BOUND CHOSEN TO BE

0.01)

Components Dimensions
10 50 250 1250

10 1.1 2.2 2.3 1.2
50 2.8 2.6 2.4 2.8
250 7.8 7.1 7.4 9.1
1250 32 36.3 35.2 34

TABLE VIII
AVERAGE NUMBER OF USED COMPONENTS (ERROR BOUND CHOSEN TO BE

0.001)

Components Dimensions
10 50 250 1250

10 2.2 2.2 2.8 2.4
50 2.5 2.5 2.5 3.3
250 9.4 10.8 11.8 12
1250 43.4 49.8 54.2 53.2

Fig. 1 shows the linear behavior of our selection algorithm
independently of the chosen α.

B. Evaluation 2: Time Savings

To evaluate the actual time savings compared to the naive
implementation we check the time saving dependent on the
number of mixture components and number of dimensions.
We do this check for three different error bounds. Our starting
mixture has a uniform weight distribution where the mean-
vectors and covariance matrices are randomly generated.

Tables I–II show the average runtime measurements for the
naive and approximate algorithm, respectively. Tables III–V
show that the runtime saving factor ( runtime naive

runtime approx. ) increase with
number of components and number of dimensions. In the high
complexity case in our evaluation, the approximate algorithm
performs up to 40 times than the naive implementation. That
factor is high enough to make mixture models applicable in



situations where they otherwise would lead to unreasonably
high computational costs.

Tables III–V have different error bounds. With some ir-
regularities (potentially connected to processes running in the
background) we can see a tendency that a more relaxed error
bound leads to more runtime savings.

C. Evaluation 3: Used components

The third evaluation investigates the number of used com-
ponents in the approximate approach and should be tightly
connected to the time savings because the run-time is driven by
the number of components for with the posterior distribution
needs to be calculated. Tables VI–VIII contain the average
number of used components for different error bounds and
show that for more restrictive error bounds the number of
used components becomes higher. Logically the approach
needs also more components if the underlying model has
more components. Similar to the time-savings the number
of dimensions also have a positive effect on the number of
components but much less than the number of components.
In general the number of used components for the restrictive
error bound in Table VIII is around 5%.

VII. CONCLUSION

We contribute to the area of GMMs with a new approx-
imate query answering algorithm for conditional probability
distributions. In our theoretical complexity analysis we have
proven that the additional costs of selecting the top-L mixture
components are easily out-leveled by the time-savings of
calculating less conditional probability distributions. Using
randomly generated test mixtures we have shown that we
can realize significant time savings in high complexity setups.
These high complexity setups will become more frequent
when concepts such as nonparametric Bayesian networks or
infinite mixture models are more widely used. At the same
time our approximate approach offers runtime savings that can
make high complex GMMs applicable in situations where the
calculation of the exact solution is currently unreasonable.
Looking forward we will transfer our approach to other
mixture models (e.g. mixtures of Gaussian Processes) and we
will further evaluate the algorithm in real applications.
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