
Lifted Division for Lifted Hugin Belief Propagation

Moritz P. Hoffmann Tanya Braun Ralf Möller
singularIT GmbH
Lübeck, Germany

Computer Science Department,
University of Münster, Germany

Institute of Information Systems,
University of Lübeck, Germany

Abstract

The lifted junction tree algorithm (LJT) is an
inference algorithm that allows for tractable
inference regarding domain sizes. To answer
multiple queries efficiently, it decomposes a
first-order input model into a first-order junc-
tion tree. During inference, degrees of belief
are propagated through the tree. This prop-
agation significantly contributes to the run-
time complexity not just of LJT but of any
tree-based inference algorithm. We present
a lifted propagation scheme based on the so-
called Hugin scheme whose runtime complex-
ity is independent of the degree of the tree.
Thereby, lifted Hugin can achieve asymp-
totic speed improvements over the existing
lifted Shafer-Shenoy propagation. An empir-
ical evaluation confirms these results.

1 INTRODUCTION

Lifted algorithms allow for tractable inference regard-
ing domain sizes (Niepert and Van den Broeck 2014).
With the lifted junction tree algorithm (LJT), Braun
and Möller (2016) lift the propositional junction tree
algorithm (JT) by Lauritzen and Spiegelhalter (1988)
to efficiently handle multiple queries. Facing multiple
queries is a problem that occurs during model learning
as well as general query answering settings. With the
advantage of tractability and the general applicability
of the underlying modelling formalisms, advances in
lifting may support applications in many areas such
as healthcare (Gehrke et al. 2019).

A significant factor in the runtime of tree-based algo-
rithms such as LJT is belief propagation, also called
message passing, in the tree. The two best known

Proceedings of the 25th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2022, Valencia,
Spain. PMLR: Volume 151. Copyright 2022 by the au-
thor(s).

propagation schemes for propositional junction trees
(jtrees) are Shafer-Shenoy (Shafer and Shenoy 1990)
and Hugin (Jensen et al. 1990). LJT implements
a lifted version of the Shafer-Shenoy propagation on
its first-order (FO) jtree. However, the advantage of
Hugin over Shafer-Shenoy in terms of fewer calcula-
tions per message also applies to the lifted setting.
Only, Hugin requires a lifted division operator that,
to the best of our knowledge, does not exist.

Therefore, our contributions are twofold: (i) We solve
the problem of first-order factor division by defining
a lifted division operator. (ii) We present the lifted
Hugin scheme as a means to efficiently organize mes-
sage passing in FO-jtrees. Lifted operators are a fun-
damental building block of lifted inference algorithms
such as lifted variable elimination (LVE) (Poole 2003)
and LJT. As a lifted division operator has not yet
been defined, we close a gap in the suite of lifted op-
erators on probabilistic models. Our approach builds
upon the formalism for lifted operators established by
Taghipour, Davis, et al. (2013). With lifted Hugin, we
achieve a belief propagation with a runtime polyno-
mial in the domain size and per message, independent
of the degree of the underlying FO-jtree. As such, LJT
with lifted Hugin enables shorter answering times per
query than lifted Shafer-Shenoy in different settings as
evidenced by our empirical evaluation.

The paper is structured as follows: First, we look
at related work. Then, we recap the modelling for-
malism and LJT including Shafer-Shenoy propagation.
We follow with presenting our two main contribu-
tions, leading into a discussion and empirical evalu-
ation. Last, we conclude and look at future work.

2 RELATED WORK

Zhang and Poole (1994) present variable elimination,
which remains a cornerstone of probabilistic inference.
Poole (2003) introduces the idea of exploiting sym-
metries for inference by proposing LVE. After the in-
troduction of count conversion and counting random
variables (CRVs, Milch et al. 2008) and other refine-

Lifted Division for Lifted Hugin Belief Propagation

ments (Salvo Braz et al. 2005; Salvo Braz 2007; Fried-
man and Van den Broeck 2020), Taghipour, Fierens,
et al. (2013) consolidate a standard LVE, using lifted
operators decoupled from the model constraint lan-
guage. Note: For lifted Hugin, we can treat a CRV as
any other PRV but with special ranges in the form of
histograms. For a definition of CRVs and count con-
version, refer to Milch et al. (2008). Taghipour, Davis,
et al. (2013) analyze LVE and its runtime complexity.

JT dates back to Lauritzen and Spiegelhalter (1988).
The connection between variable elimination and
jtrees through the clusters of a decomposition tree rep-
resenting a variable elimination calculation is proposed
by Darwiche (2001). Message passing in junction trees
follows either the Shafer-Shenoy propagation scheme
(Shafer and Shenoy 1990), the Lauritzen-Spiegelhalter
scheme, or the Hugin scheme (Jensen et al. 1990).
Lepar and Shenoy (1998) compare the three propaga-
tion schemes, providing first insights into where Hugin
can effectively trade space requirements for runtime
improvements. Braun and Möller (2016) lift JT to
the first-order level. Their LJT uses LVE as a sub-
routine and relies on the Shafer-Shenoy message pass-
ing scheme (Braun 2020). Ahmadi et al. (2013) lift
loopy belief propagation, sending messages directly on
a model graph.

To the best of our knowledge, neither a lifted division
operator nor a lifted Hugin scheme exists, which allow
for further efficiency gains for inference problems.

3 PRELIMINARIES

In this section, we recap the modelling formalism and
lifted query answering with LVE and LJT. We assume
familiarity with operators of relational algebra.

3.1 Parameterised Probabilistic Models

Parameterised probabilistic models use logical vari-
ables (logvars) to represent indistinguishable ran-
dom variables (randvars) (Poole 2003). Given a
set of randvars R, a parameterised randvar (PRV)
A(X1, . . . , Xn), n ≥ 0 is a syntactical construct that
uses a finite set of logvars X = {X1, . . . , Xn} to com-
pactly encode a finite set of indistinguishable randvars
A ⊆ R. If n = 0, the PRV is a propositional rand-
var. The range of a PRV A, written as R(A), denotes
possible values of A. Every logvar Xi ∈ X has a do-
main D(Xi). We assume here and in the following
that all logvars are standardised apart. A valuation
a of A is an assignment of values to all A ∈ A. The
set of all valuations of a set or sequence A of PRVs
is written val(A). A constraint (X , CX) restricts the
logvars in a sequence X = (X1, . . . , Xn) to the values

given in CX ⊆ ×n
i=1D(Xi). The symbol ⊤ denotes

CX = ×n
i=1D(Xi) and may be omitted. A PRV A,

with its logvars constrained to C, is written as A|C .
For a sequence of PRVs A = (A1, . . . , An), constrained
to C, and a potential function ϕ : ×n

i=1R(Ai) → R≥0

which is not the null function, a parfactor g = ϕ(A)|C
models the interrelation between the Ai. Given an el-
ement P , such as a PRV, a parfactor, or sets thereof,
the term lv(P) denotes the logvars in P , the term
rv(P) denotes the PRVs in P with their constraints,
and the term gr(P|C) represents the set of ground in-
stances of P , w. r. t. to constraint C. A set of parfac-
torsG = {gi}ni=1 is a parameterised probabilistic model.
The semantics of a parameterised model is given in
terms of its full joint distribution

PG =
1

Z

∏
f∈gr(G)

f (1)

with normalisation constant Z. A query in G is a term
P (Q | E) where Q is a set of grounded PRVs and E
a set of valuations (evidence). Example 1 gives an
intuition about such models.

Example 1. A model Gex = {gi}3i=0 models the inter-
relation between an epidemic Epid, health conditions
Sick(X), travel behaviours Travel(X), and treatments
Treat(X,M) of persons X and treatment methods M ,
governmental regulations Reg(G), human-made disas-
ters Man(W), and natural disasters Nat(D), with

g0 = ϕ0(Epid,Treat(X,M),Sick(X))

g1 = ϕ1(Epid,Travel(X),Sick(X))

g2 = ϕ2(Epid,Reg(G))

g3 = ϕ3(Epid,Man(W),Nat(D))

Figure 1 shows a graphical representation with PRVs
as ellipses and parfactors as boxes, connected if a
PRV is an input to a parfactor. A query for Gex is
P (Epid | Sick(bob) = true), asking for the conditional
distribution of Epid given that Sick(bob) is true.

Man(W)
Nat(D)

g3

Reg(G)

g2
Epid

Sick(X)

Travel(X) Treat(X,M)
g1 g0

Figure 1: Parfactor graph of Gex.

3.2 Lifted Query Answering

LVE and LJT answer queries for probability distribu-
tions. We briefly recap both approaches.

Moritz P. Hoffmann, Tanya Braun, Ralf Möller

Epid,Sick(X)
Treat(X,M)

{g0}

Epid,Reg(G){g2}

Epid,Sick(X)
Travel(X)

{g1}

Epid,Man(W)
Nat(D)

{g3}

Figure 2: An FO-jtree for model Gex from Figure 1.
The sets in grey denote the local models.

3.2.1 Lifted Variable Elimination

LVE exploits symmetries leading to duplicate calcula-
tions. In essence, it computes a ground representative
case and exponentiates its result for indistinguishable
instances (lifted summing out). Taghipour, Davis, et
al. (2013) implement LVE through an operator suite.
Its main operator sum-out realises lifted summing out.
An operator absorb handles evidence in a lifted way.
The remaining operators (count-convert, split, expand,
count-normalise, multiply, ground-logvar) aim at en-
abling a lifted summing out. All operators have pre-
and postconditions to ensure computing a result equiv-
alent to one computed on gr(G). To answer a query
Q in a model G with evidence E, LVE absorbs E
and eliminates all non-query PRVs using the opera-
tors. For a new query, LVE starts over.

3.2.2 Lifted Junction Tree Algorithm

For efficient repeated query answering, LJT decom-
poses a model into an FO-jtree J = (V,U) that con-
sists of parametric clusters (parclusters) Ci ∈ V of
PRVs as nodes and a set of edges U between par-
clusters with at least one common PRV. Intuitively,
parclusters are sets of PRVs that form a clique in the
original parfactor graph. The set of parfactors that is
covered by a parcluster is called the parcluster’s local
model. For details, see Braun and Möller (2016).

Example 2. Consider model Gex of Fig. 1. Its FO-
jtree is given by Fig. 2.

LJT’s main workflow to answer a set of queries
{Qi}mi=1 given a model G and evidence E is: (i) Con-
struct an FO-jtree J for G. (ii) Enter E into J .
(iii) Pass messages in J . (iv) Compute answers for
{Qi}mi=1. At the cost of some initial overhead (Steps
1 and 3), the tree decomposition takes away the need
to perform LVE on the entire graph for every single
query. The goal of message passing is to render any
parcluster Ci independent of its neighbours NB(Ci)
behind the separators Sij = Ci ∩Cj it shares with its
neighbouring parclusters Cj ∈ NB(Ci). Then, each
parcluster can answer queries about its PRVs locally,

by eliminating all non query-variables from its local
model and received messages. Message passing has
the following procedure in general:

1. Parcluster Ci, having received messages from all
neighbours but Cj , sends a message Mij to Cj .

2. A parcluster, having received messages from all
neighbours, sends messages to all its neighbours.

As Condition 1 is automatically true for leaf nodes, the
scheme leads to two passes. In the first, inward pass,
messages starting at the leaves transport information
inward. At some point, Condition 2 becomes true for
a central node in the tree, triggering an outward pass:
Inner nodes that have collected all information send
their messages back to the tree periphery.

For LJT, Braun lifts the Shafer-Shenoy scheme (Shafer
and Shenoy 1990). In this scheme, clusters store all
local parfactors and messages individually. The out-
bound message over separator Sij is a setmij of factors
that is computed by summing out all non-separator
PRVs from the submodel:

G′
i ≡ Gi ∪

⋃
Ck∈NB(Ci)\Cj

mki

where the union over Ck ∈ NB(Ci) \Cj contains the
already received messages from Ci’s neighbours. As
Ci receives more and more messages, the number of
messages eventually increases to O(d), where d is the
degree d = maxi |NB(Ci)| of the FO-jtree. Shafer-
Shenoy hands the set G′

i to LVE which sums out all
non-separator randvars. To enable summing out, LVE
must first multiply the parfactors. These multipli-
cations are performed for every message individually.
However, the partaking parfactors are mostly the same
in each message calculation (see Section 5.4.1). These
multiplications can be saved. The propositional Hugin
scheme (Jensen et al. 1990) trades space for runtime
complexity and shows a polynomial runtime indepen-
dent of the degree. Yet, in order to compute messages,
a division operator is required. Introducing a lifted di-
vision operator as an enabler for lifted Hugin message
passing is the first quest that this paper addresses.

4 PARFACTOR DIVISION

This section presents the lifted division operator and
provides proof of its correctness and completeness with
respect to known liftable classes. We conclude with an
analysis of its runtime complexity. To get an intuition
about division, we first look at its inverse operation
of multiplication. As it is instructive to consider the
ground case before lifting, we generalise propositional
factor division and build the definition of lifted division
on top of that foundation.

Lifted Division for Lifted Hugin Belief Propagation

4.1 Multiplication

In propositional multiplication f = f1 ⊗ f2, the po-
tential of any valuation a ∈ val(A1 ∪ A2) in the new
factor f = ϕ(A1 ∪ A2) is calculated as the product of
the potentials of factors f1 = ϕ1(A1) and f2 = ϕ2(A2),

ϕ(a) = ϕ1(πA1
({a})) · ϕ2(πA2

({a})) (2)

The lifted multiplication operator takes two parfac-
tors g1 and g2 and returns a new parfactor g = g1⊗ g2
which represents the lifted product. A so-called align-
ment, i. e., a one-to-one renaming substitution, lets
the operator know, which logvars between the parfac-
tors correspond to each other. Formally, an alignment
θ = {Z1 → Z2} between parfactors g1 = ϕ1(A1)|C1

and g2 = ϕ(A2)|C2
with Ci = (Xi, CXi

) for i ∈ {1, 2}
is a mapping from Z1 ⊆ lv(X1) to Z2 ⊆ lv(X2) such
that (πZ1(C1))θ = πZ2(C2) where π is applied to the
second component of constraint Ci.

In terms of groundings, the result of the lifted mul-
tiplication is equivalent to multiplying corresponding
grounded factor potentials individually. Consider two
parfactors g1 = ϕ1(A1)|C1

and g2 = ϕ2(A2)|C2
with

an alignment θ = {Z1 → Z2} where Zi = lv(rv(g1) ∩
rv(g2)). If each grounding f1 ∈ gr(g1) corresponds to
exactly one f2 ∈ gr(g2), then we have the same num-
ber of ground instances of g1 as we have of g2 and we
can multiply two arbitrary representatives f1 and f2
and use the same result for all other groundings.

However, in general, the groundings of g1 may inter-
act with a number of groundings of g2. In such a sce-
nario, the factor potential resulting from the multi-
plication accounts for different numbers of groundings
across parfactors and thereby requires scaling during
multiplication. To scale potentials, the groundings of
g1 must be count-normalised w. r. t. the groundings of
g2 and vice versa, i. e., each grounding of one refers
to the same number of groundings of the other. More
precisely, count normalisation of a logvar Y w. r. t. an-
other logvar Z ensures that for each possible ground-
ing zi of Z, there is a natural number r of groundings
yi1 , . . . , yir of Y , and this number is the same for all
zi ∈ πZ(CX). Count normalization is usually achieved
by splitting parfactors to establish disjoint or com-
mon constraints using one of the available lifted oper-
ators. For a constraint C = (X , CX) with Y ⊆ X and
Z ⊆ (X\Y), the count function CountY|Z : CX → N
is defined for any tuple t as

CountY|Z(t) = |πY (CX ▷◁ πZ({t})) |

In other words, CountY|Z(t) counts how many values
in Y co-occur with values in Z in the tuple t under
constraint C. If Y = ∅, then CountY|Z(t) = 1 by
definition (Taghipour, Fierens, et al. 2013). The join

operator ▷◁ acts on a constraint by joining on its set
CX , so if CX = {(x1, y1), (x2, y1)}, then C ▷◁ {(x1)} =
{(x1, y1)}. For Y ⊆ X and Z ⊆ (X \ Y), we call Y
count-normalised with respect to Z in C iff ∃r ∈ N :
∀t ∈ CX : CountY|Z(t) = r If such an r exists, it is
called the conditional count of Y given Z in C, written
as r = NcountY|Z(C). As an example, consider the
human parent relation. Every child z ∈ D(Z) has two
biological parents y1, y2 ∈ D(Y), so logvar Y is count-
normalised w. r. t. Z with NcountY |Z(⊤) = 2. The
inverse is not automatically true, as parents can have
more or fewer children.

So, prior to lifted multiplication g1 ⊗ g2, it must hold
that ri = Ncountlv(Ai)\Zi|Zi

(Ci) for i = 1, 2, i. e.,
the non-aligned logvars of each parfactor gi must be
count-normalised w. r. t. the aligned logvars Zi under
constraints Ci. Then, the lifted product corresponding
to the ground operations of Eq. (2) is

ϕ(a) = ϕ
1/r2
1 (a1) · ϕ1/r1

2 (a2).

4.2 Generalised Propositional Division

As a prelude to lifted division, we generalise propo-
sitional factor division (Darwiche 2009). The gener-
alised division of two ground factors f1 = ϕ1(A1) and
f2 = ϕ2(A2) over sequences A2 ⊆ A1 of randvars
yields a new factor f = ϕ(A1) with factor potential

ϕ(a1) =

{
ϕ1(a1)/ϕ2(a2) if ϕ2(a2) ̸= 0

0 otherwise
(3)

for each valuation a1 ∈ val(A1), a2 ∈ val(A2). Note
that A2 must be equal to or a subset of A1. Other-
wise, the division is not well-defined. In the following,
the division of any factor or parfactor g1 by another
factor or parfactor g2 is denoted by g1⊘g2. Under cer-
tain conditions, factor division is the inverse of factor
multiplication (see Section 4.4.1).

4.3 Lifted Division Operator

From the generalised factor division, we derive a lifted
division of parfactors. Following the formalism of
Taghipour (2013), the lifted division operator is shown
as Operator 1. Given two parfactors g1 ∈ G, g2 ̸∈ G
and an alignment θ = {Z1 → Z2} with Zi ⊆ lv(Ai) for
i = 1, 2 fulfilling the preconditions (1)–(3), the lifted
division operator returns a new parfactor g = g1 ⊘ g2
that corresponds to the generalised ground divisions.
Precondition (1) is carried over from propositional fac-
tor division, namely the PRVs A1 of the divisor g2
must be a subset of the PRVs A2 of the dividend.
It ensures that the result is well-defined. Precondi-
tion (2) requires the non-aligned logvars to be count-

Moritz P. Hoffmann, Tanya Braun, Ralf Möller

Operator 1 Divide

Input:
(1) g1 = ∀x1 ∈ πX1

(C1) : ϕ1(A1)|C1
, g1 ∈ G

(2) g2 = ∀x2 ∈ πX2
(C2) : ϕ2(A2)|C2

, g2 ̸∈ G
(3) θ = {Z1 → Z2}, an alignment where Zi ⊆ lv(Ai)
for i = 1, 2

Preconditions:
(1) A2 ⊆ A1

(2) r = Ncountlv(A1)\Z1|Z1
(πX1

(C1))
(3) ∀a2 ∈ val(A2) : ϕ2(a2) ̸= 0 or g1 = g2 ⊗

∏
i gi

Output: ∀x ∈ πX1θ∪X2
(C) : ϕ(A)|C such that

A = A1θ
C = C1θ ▷◁ C2

for each a ∈ val(A),
a1 = πA1θ({a}),
a2 = πA2

({a}),

ϕ(a) =

{
ϕ1(a1)/ϕ

1/r
2 (a2) if ϕ2(a2) ̸= 0

0 otherwise

Postconditions:
G ≡ G \ {g1} ∪ {Divide(g1, g2, θ)} ∪ {g2}

normalised w. r. t. the aligned logvars. Otherwise scal-
ing can not be applied and lifted division is not possi-
ble. Precondition (3) states that one of the following is
true: (a) there must be no zeros in the potential func-
tion of g2, or (b) g2 is part of the factorisation of g1. In
other words, g1 must be expressible as a lifted prod-
uct with g2 as a partaking factor. Precondition (3)
is ensured, for example, if g1 is the result of a lifted
multiplication of g2 with other parfactors.

4.4 Analysis

Next, we prove some properties of Op. 1 that are im-
portant for the lifted Hugin scheme.

4.4.1 Correctness

Correctness of Op. 1 guarantees that its postcondition
holds given Preconditions (1), (2), and (3). To show
correctness, we need the following lemma.

Lemma 4.1. For parfactors g1, g2 fulfilling all prereq-
uisites of Op. 1, it holds that

g1 = (g1 ⊗ g2)⊘ g2 (4)

Proof. Rewriting Eq. (4) as follows

ϕ1(a1) =
ϕ
1/r2
1 (a1) · ϕ1/r1

2 (a2)

ϕ
1/r′1
2 (a2)

.

where r1 = r′1 and r2 = 1, enabling eliminating ϕ2,
shows that Eq. (4) holds.

Theorem 4.1. The lifted division operator is correct.

Proof. First, observe that for all models G,G′, G′′ :
G′ ≡ G′′ ⇒ G ∪G′ ≡ G ∪G′′ (Taghipour, Fierens, et
al. 2013). Now, let G′ ≡ G \ {g1}. It remains to show
that {Divide(g1, g2, θ)} ∪ {g2} ≡ {g1}, i. e., the union
of the division result and the divisor must be equiva-
lent to the original factor. Recall that the semantics
is given by the full joint. With g = Divide(g1, g2, θ),
we have to show that the following are equivalent:

P{g,g2} =
g ⊗ g2
Z1

and P{g1} =
g1
Z2

With Lemma 4.1, it holds that if g = g1 ⊘ g2, then
g⊗g2 = g1. Hence, the factorisation is

∏
g′∈{g,g2} g

′ =
g ⊗ g2 = g1 with normalizing constants Z1 = Z2.

4.4.2 Complexity

The complexity of lifted division used within an FO-
jtree depends on the number of parclusters as well as
the largest intermediate parfactor size during calcula-
tion, i. e., the number of input to output mappings that
the operator has to iterate through. Taghipour, Davis,
et al. (2013) provide an upper bound for this size with
the node complexity, as given by Definition 4.1. Braun
(2020) use these results to express parcluster complex-
ity. As any parfactor g = ϕ(A)|C can be rewritten as
parcluster C = {A|A ∈ A}|C , node complexity can
be used to characterize the complexity of individual
parfactors. The ground width wg of an FO-jtree is the
largest number of PRVs in any of the clusters. Anal-
ogously, the counting width w# is the largest number
of CRVs in any of the clusters.

Definition 4.1. The complexity of a set of PRVs A
is

C(A) = r̂wg · n̂w#r#
(5)

where r̂ denotes the largest range size of any PRV, r̂#
the largest range size in any CRV, n̂ the largest domain
size of any PRV, and n̂# the largest counted domain.

Definition 4.2. The complexity C(g) of parfactor g =
ϕ(A)|C is C(A|C), A = {A|A ∈ A}.

Intuitively, these complexities provide an estimate of
how many entries a table has for the potentials of all
possible combinations of range values of the PRVs and
CRVs. The term r̂wg is the size of a table that holds
the potentials for all PRVs and the term n̂

w#r#
pro-

vides an upper bound for the range sizes of the w#

CRVs, as proposed by Taghipour, Davis, et al. (2013).
In LVE, the same concept is used to describe the worst-
case intermediate result, which most prominently in-
fluences LVE’s runtime. With these preliminary con-
siderations, we derive an expression for the runtime
complexity of lifted division.

Lifted Division for Lifted Hugin Belief Propagation

Theorem 4.2. Let n1 = maxZi∈Z1 |D(Zi)|, the max-
imum number of instances covered by lifted division.
The runtime complexity of lifted division g1 ⊘ g2 is

O(log(n1) · C(g1)) (6)

Proof. From Precondition (1) in Op. 1, it must hold
that C(g1) ≥ C(g2). A division of ground potential
values is independent of domain or range sizes. Hence,
the division of potentials requires at most C(g1) oper-
ations. Scaling the resulting potential to the power of
at most n1 requires O(log(n1)).

5 LIFTED HUGIN PROPAGATION

This section specifies a lifted Hugin message passing
scheme for LJT, based on the definition of the lifted
division operator. As a stepping stone to lifting Hugin,
it identifies repeated operations in propositional Hugin
given symmetries in the model. The elimination of
these symmetries leads to the lifted Hugin scheme.
This section concludes with an analysis and proof of
lifted Hugin’s runtime complexity.

5.1 Propositional Hugin Under Symmetries

Instead of multiplying local factors and received mes-
sages for each neighbour individually, as in the Shafer-
Shenoy scheme, the Hugin scheme multiplies all local
factors of a clusterCi once, stored in a local Hugin fac-
tor hi. Any incoming message is also multiplied into
hi as well as stored separately. Outgoing messages are
calculated by dividing the incoming message from the
receiver out of the Hugin factor and summing out the
non-separator randvars from the result.

Before lifting Hugin, it is instructive to look at propo-
sitional Hugin under symmetries. As an illustration,
consider Fig. 3. Assume that the leaf nodes C1 are
symmetric in that they share the same randvars and
the same potential function for all xi, yi. At any clus-
ter, the Hugin factor is initialised as the product of
local factors, which are the same across all instances
due to the symmetry. It follows that the Hugin fac-
tors h1 are the same for all clusters C1. All inbound
messages mj0 are

∑
C1\Sj0

h1. At the receiving cluster
C0, the Hugin update is

h′
0 = h0 ⊗m10 ⊗m20 ⊗ · · · ⊗mn0

As all mj0 are identical, this expression reduces to

h′
0 = h0 ⊗mn

10,

which essentially corresponds to a single lifted multi-
plication. So, lifting the Hugin initialisation and the
inward pass is rather straightforward.

During the outward pass, shown in Fig. 3 by the ar-
rows pointing away from C0, cluster C0 sends mes-
sages to a number of identical receiving clusters Cj .
It becomes clear that the outward messages m0j =∑

C0\Sj0
(h0 ⊘mj0) are the same for all j if all of the

identical inbound messages mj0 from the leaf clusters
are present. Lifting ensures this concurrency condi-
tion, as one lifted message covers all ground clusters.
Therefore, it suffices to calculate the message m0j for
one node j and use the same result for all clusters.

After receiving m0j , the Hugin factor in all of the leaf
clusters is updated the same way: h′

j = hj ⊗ m0j .
Hence, all clusters C1 can be represented as one par-
cluster that sends and receives messages in a lifted
manner. These considerations lead to a lifted Hugin
message passing scheme.

C0(x1, y1)C1(x1, y1)

C1(x2, y2)

C1(x3, y3)

C1(xn, yn)

m10

m01

m20

m02

m30

m03

mn0

m0n

Figure 3: Message passing in a ground jtree with ex-
posed symmetries. The notation Ci(xj , yj) represents
the groundings obtained from Ci when constants xj

and yj are used as arguments in the PRVs in Ci.

5.2 Formal Specification

Formally, for each parcluster Ci, lifted Hugin main-
tains a local parfactor hi which is initialised as the
lifted product of all parfactors of the local model Gi,

hi =
∏
g∈Gi

g (7)

For an incoming message mji, the Hugin factor is up-
dated through lifted multiplication h′

i = hi ⊗mji. Af-
ter having received all required messages, according
to the message passing conditions, parcluster Ci com-
putes its outbound message to parcluster Cj in the
following way: First, lifted Hugin divides the Hugin
parfactor hi by the inbound message of parfactor Cj ,
to remove the information already present at Ci. This
division leads to a new parfactor

gij =

{
hi ⊘mji if mji exists

hi otherwise
(8)

Moritz P. Hoffmann, Tanya Braun, Ralf Möller

If Cj is the only neighbour of Ci that has not yet sent
its message to Ci, the message mij can nevertheless
be computed. In this case, mij is not yet contained in
the local factor hi and the message parfactor simplifies
to gij = hi. Afterwards, the outbound message mij is
obtained by eliminating all non-separator PRVs in gij .

5.3 Complexity Results

Let n = max{n̂, n̂#}, where n̂ and n̂# are the largest
PRV and CRV domain sizes as in Section 4.4.2. Given
an FO-jtree J = (V,U) with parclusters Ci ∈ V, its
complexity is C(J) = maxCi∈V(C(Ci)).

Theorem 5.1. Given an FO-jtree J = (V,U), lifted
Hugin propagation in J has a runtime complexity of

O(|V| · log(n) · C(J)) (9)

Proof. As described above, one complete cycle of
Hugin propagation consists of the initial calculation
of the Hugin factors, and the two passes of message
passing. We look at the initialisation first.

At each parcluster in an FO-jtree, the Hugin factor hi

is initialised by multiplying all parfactors g ∈ Gi of
local model Gi (Eq. (7)). Together with scaling the
result in log(n), lifted multiplication has a complexity
of O(log(n) · C(hi)). Observe that the complexity of
the Hugin factor of cluster Ci is the complexity of the
cluster itself, i. e., C(hi) = C(Ci). Thus, the Hugin
initialisation for any parcluster Ci has a complexity of
O(log(n)·C(Ci)). As C(J) = maxCi∈C C(Ci) and there
are |V| parclusters in an FO-jtree, the complexity for
Hugin initialisation in J = (V,U) is given by Eq. (9).

The message passes are two executions of the same
procedure, namely, the calculation of a message by
lifted division, followed by summing out, and updating
the Hugin factor through lifted multiplication. This
happens at every cluster in the FO-jtree. Lifted divi-
sion of gij = hi ⊘ mji has a complexity of O(log(n) ·
C(hi)), which does not add to the asymptotic complex-
ity. Summing out the non-separator PRVs from the
message parfactor gij takes at most O(log(n) · C(gij))
operations (Taghipour, Davis, et al. 2013), when per-
formed using LVE. As C(gij) ≤ C(J), summing-out
does not add to the asymptotic complexity either. Ob-
serve that any lifted multiplication hi ⊗ mji is also
bounded by O(log(n) · C(hi)). Consequently, Eq. (9)
holds for the entire message passing procedure.

5.4 Discussion

This section compares the lifted Hugin and the lifted
Shafer-Shenoy propagation and describes how to use
lifted Hugin for adaptive inference.

5.4.1 Comparison with Shafer-Shenoy

To compare the lifted Hugin scheme to the lifted
Shafer-Shenoy scheme, recall the FO-jtree from Fig. 2.
One complete procedure of lifted Hugin message pass-
ing consists of the following steps: First, local Hugin
parfactors are initialised. As every local model consists
of exactly one parfactor, namely Gi = {gi} we have
hi = gi for i ∈ {0, 1, 2, 3}. Next, the inbound messages
are prepared. From Eq. (8), the inbound messages
are trivially computed by eliminating all PRVs but
S0i = {Epid} from intermediate parfactors gi0 = hi.
In Shafer-Shenoy, the set of local parfactors making up
the local model are handed over to LVE, which in turn
handles the lifted multiplication and summing out. In
the Hugin scheme, only the Hugin factor is handed
over to LVE, where only the summing out operation
remains to be done. In our example, there is no dif-
ference between Hugin and Shafer-Shenoy in terms of
the number of lifted operations. However, when the
local model consists of a multitude of parfactors, LVE
has more work to do per neighbour under the Shafer-
Shenoy propagation scheme. More differences emerge
during the outward pass. To compute the intermediate
parfactor g01 for message m01, Shafer-Shenoy would
perform the following lifted multiplications

g01 = g0 ⊗m20 ⊗m30 ⊗m40

before eliminating Treat(X,M) and Sick(X) from the
result g01. This factorisation is computed for each mes-
sage, with one of the partaking parfactors exchanged.
E.g., for g02, m10 replaces m20. Hugin on the other
hand, requires computing a similar product only once:

h′
0 = h0 ⊗m10 ⊗m20 ⊗m30 ⊗m40 (10)

Then, for all subsequent messages i ∈ {1, 2, 3}, the
computation is reduced to g0i = h0 ⊘ mi0. With
Eq. (6), we have already established that the complex-
ity of any such lifted division is O(log(n)·C(C)), where
n is the largest domain size covered by the operation.
Taghipour, Davis, et al. (2013) show the same com-
plexity result for lifted multiplication. Observe that n1

is constant for any parcluster and C(C) is determined
by the range values and domain sizes of the PRVs in-
volved. Despite the larger factorisation in Eq. (10), the
size of intermediate results, and thereby the node com-
plexity is not increased by the operation. This is due
to the fact that the messages contain only PRVs from
the separators. So, the node complexities influencing
the lifted operations are the same for both propagation
schemes. However, as argued above, in terms of the
degree d of the FO-jtree, the Shafer-Shenoy scheme de-
pends on d per message, i. e., O(d), whereas for lifted
Hugin, only one the sum-out operations are needed for
every message, which does not depend on d, i. e., O(1).

Lifted Division for Lifted Hugin Belief Propagation

These runtime improvements however have a cost in
terms of space complexity. We have seen that Shafer-
Shenoy stores the parfactors as well as all messages
individually. So its space complexity is given by
the complexity of the largest parfactor in the model
O(maxg∈G(C(g))). As Hugin requires the space to
store the Hugin factors of each parcluster, its space
requirements are O(C(J)), which is exponential in the
ground width, the counting width and the largest PRV
range size of the model, as can be seen from Eq. (5).

5.4.2 Adaptive Inference

Adaptive inference aims to reuse as many calculations
as possible when changes, e.g., in evidence, occur,
which an FO-jtree with its messages easily supports.
For message passing, we only want to update those
messages affected by changes. The lifted division op-
erator plays an important role in an adaptive message
passing as it allows for information to be removed from
any parfactor by dividing out the respective messages
(or old parfactors). When new parfactors are added
to the model or parfactors are altered, it suffices to
divide out the obsolete messages of the Hugin factors
and multiply them with the new message, before trig-
gering a partial message pass, instead of running the
entire procedure all over.

For example, assume that in the FO-jtree from Fig. 2,
parfactor g1 is altered. To update the model, C1 needs
to resend a message m′

10 to C0, where C0 merely di-
vides out the old message m10, which is now obsolete,
of its local Hugin parfactor hi. Finally, C0 updates
its local Hugin factor to h′

0 = h0 ⊗m10 with the new
message. It then sends out outbound messages to its
neighbours which receive the new information.

6 EVALUATION

We have evaluated the lifted Hugin propagation
scheme in a number of settings based on the LJT
implementation available1. Our empirical results are
shown in the following figures. All runtimes are given
in milliseconds. All values are averages over five runs.
We decided not to add confidence intervals, as they
are so small, they complicate reading the plots while
providing only little added value.

Figure 4 shows a comparison of the runtimes of ground
and lifted variants of the Shafer-Shenoy and Hugin
message passing schemes. The model used is Gex as
shown in Fig. 1, where the domain size for X is varied
between 1 and 103. In this scenario, we do not expect
Hugin and Shafer-Shenoy to exhibit major differences
in either their propositional or lifted variant. The re-

1. https://www.ifis.uni-luebeck.de/index.php?id=518

101

102

103

104

100 101 102 103

Lifted Hugin
Ground Hugin
Lifted Shafer-Shenoy
Ground Shafer-Shenoy

Figure 4: Influence of the domain size on runtime of
different propagation schemes. Times [ms] shown are
total runtimes, consisting of tree construction, message
passing, and query answering. Model used is Gex from
Fig. 1, which is a typical model for lifted probabilistic
inference.

10−1

100

101

102

103

100 101 102

dom: 10, constr. + msgs.
dom: 1000, constr. + msgs.
dom: 10, query avg.
dom: 1000, query avg.

Lifted
Hugin

Lifted
Sh.-Sh.

Figure 5: Influence of the degree of the FO-jtree on
runtime [ms] of different propagation schemes in a
graph with a star topology.

sults show the effect of lifting however: The runtimes
for lifted schemes are polynomial in domain sizes.

Figure 5 shows the runtimes of lifted Hugin compared
to lifted Shafer-Shenoy for FO-jtrees with increasing
degree. The underlying FO-jtrees have a star topol-
ogy, consisting of a central parcluster with a number
n ∈ [1, 100] of leaf nodes. Each node has one parfactor
with one 1-ary PRV with its own logvar per parclus-
ter and one separator PRV. The values are shown for
domain sizes of 10 and 103 respectively. The model
is queried once per PRV. More parclusters lead to
more queries and a larger FO-jtree, which results in
increased runtimes. Thereby, for comparability, the
average time per query is also shown for Hugin and
Shafer-Shenoy, next to FO-jtree construction and mes-
sage passing time. As expected, the average time per
query in the Hugin scheme decreases with the number
of queries issued, whereas for Shafer-Shenoy, the influ-
ence of the number of neighbours leads to a steeper
increase in runtime. Of course, this scenario is some-
what artificial, as FO-jtrees almost never exhibit such
a perfect star topology. However, the gathered data

Moritz P. Hoffmann, Tanya Braun, Ralf Möller

10−1

100

101

102

103

100 101 102

dom: 10, constr. + msgs.
dom: 1000, constr. + msgs.
dom: 10, query avg.
dom: 1000, query avg.

Lifted
Hugin

Lifted
Sh.-Sh.

Figure 6: Influence of the domain size on runtime of
different propagation schemes. Times shown are total
runtimes [ms], consisting of tree construction, message
passing and query answering.

nicely illustrate the main differences between Hugin
and Shafer-Shenoy message propagation.

For reference, consider Fig. 6. It represents a similar
setup, but with a chain graph, instead of a star graph.
A chain graph favours Shafer-Shenoy propagation to
the maximum extent. However, the data illustrates
that while Hugin provides no asymptotic advantage
over Shafer-Shenoy, its runtime is also not asymptoti-
cally worse than that of Shafer-Shenoy.

Overall, the evaluation again showcases the advantages
of lifted inference for models that exhibit symmetries
and exhibits that a lifted Hugin propagation easily out-
performs lifted Shafer-Shenoy propagation in settings
that favour Hugin while not performing asymptoti-
cally worse than Shafer-Shenoy in settings that favour
Shafer-Shenoy. Therefore, the lifted Hugin propaga-
tion presents itself as a true alternative to the lifted
Shafer-Shenoy propagation in terms of efficiency.

7 CONCLUSIONS

With the definition of the lifted division operator and
an analysis of its main properties, we fill a missing link
in the suite of lifted operators. Lifted division enables
a lifted Hugin message passing scheme, for which we
provide a specification and a theoretical analysis, re-
vealing a runtime complexity that is independent of
the degree of the FO-jtree. With its topology-agnostic
runtime that outperforms lifted Shafer-Shenoy in a
number of scenarios, the lifted Hugin scheme is a fur-
ther step towards real-time query answering.

Another application of the Hugin scheme lies in dy-
namic inference, such as in the Lifted Dynamic Junc-
tion Tree (Gehrke et al. 2018), which we expect to
benefit from the additional adaptability through lifted

division as well as from Hugin’s degree-independent
runtime. Beyond that, the ability to split parfactors
through lifted division could possibly contribute to the
reification of parfactors for approximate inference.

References

Niepert, Mathias, and Guy Van den Broeck. 2014.
“Tractability through Exchangeability: A New
Perspective on Efficient Probabilistic Inference.”
In AAAI-14 Proceedings of the 28th AAAI
Conference on Artificial Intelligence, 2467–2475.
AAAI Press.

Braun, Tanya, and Ralf Möller. 2016. “Lifted Junction
Tree Algorithm.” In Proceedings of KI 2016: Ad-
vances in Artificial Intelligence, 30–42. Springer.

Lauritzen, S. L., and D. J. Spiegelhalter. 1988. “Lo-
cal Computations with Probabilities on Graph-
ical Structures and Their Application to Expert
Systems.” Journal of the Royal Statistical Society.
Series B (Methodological) 50 (2): 157–224. issn:
00359246.

Gehrke, Marcel, Tanya Braun, Ralf Möller, Alexan-
der Waschkau, Christoph Strumann, and Jost
Steinhäuser. 2019. “Lifted Maximum Expected
Utility.” In Artificial Intelligence in Health, 131–
141. Springer.

Shafer, Glenn, and Prakash Shenoy. 1990. “Probability
propagation.” Ann Math Artif Intell 2 (March):
327–351. https://doi.org/10.1007/BF01531015.

Jensen, Finn V., Steffen L. Lauritzen, and Kristian G.
Olesen. 1990. “Bayesian updating in causal prob-
abilistic networks by local computations” [in En-
glish]. Computational Statistics Quarterly 4:269–
282. issn: 0723-712X.

Poole, David. 2003. “First-order probabilistic infer-
ence.” In Proc. 18th International Joint Conf. on
Artificial Intelligence, 985–991.

Taghipour, Nima, Jesse Davis, and Hendrik Blockeel.
2013. “First-order Decomposition Trees.” In Ad-
vances in Neural Information Processing Systems,
edited by C. J. C. Burges, L. Bottou, M. Welling,
Z. Ghahramani, and K. Q. Weinberger, vol. 26.
Curran Associates, Inc.

Zhang, Nevin Lianwen, and David Poole. 1994. “A
simple approach to Bayesian network computa-
tions.”

Lifted Division for Lifted Hugin Belief Propagation

Milch, Brian, Luke S. Zettlemoyer, Kristian Kerst-
ing, Michael Haimes, and Leslie Pack Kaelbling.
2008. “Lifted Probabilistic Inference with Count-
ing Formulas.” In Proceedings of the 23rd Na-
tional Conference on Artificial Intelligence - Vol-
ume 2, 1062–1068. AAAI’08. Chicago, Illinois:
AAAI Press. isbn: 9781577353683.

Salvo Braz, Rodrigo de, Eyal Amir, and Dan Roth.
2005. “Lifted First-Order Probabilistic Infer-
ence.” In Proceedings of the 19th International
Joint Conference on Artificial Intelligence, 1319–
1325. IJCAI’05. Edinburgh, Scotland: Morgan
Kaufmann Publishers Inc.

Salvo Braz, Rodrigo de. 2007. “Lifted First-Order
Probabilistic Inference.” PhD diss., University of
Illinois at Urbana-Champaign.

Friedman, Tal, and Guy Van den Broeck. 2020.
“Symbolic Querying of Vector Spaces: Proba-
bilistic Databases Meets Relational Embeddings.”
arXiv:2002.10029 [cs] (June 27, 2020). Accessed
November 1, 2020.

Taghipour, Nima, Daan Fierens, Jesse Davis, and Hen-
drik Blockeel. 2013. “Lifted Variable Elimination:
Decoupling the Operators from the Constraint
Language.” Journal of Artificial Intelligence Re-
search 47 (1): 393–439.

Darwiche, Adnan. 2001. “Recursive conditioning.”
Tradeoffs under Bounded Resources, Artificial In-
telligence 126 (1): 5–41. issn: 0004-3702.

Lepar, Vasilica, and Prakash P. Shenoy. 1998. “A
comparison of Lauritzen-Spiegelhalter, Hugin,
and Shenoy-Shafer Architectures for Computing
Marginals of Probability Distributions.” In UAI-
98 Proceedings of the 14th Conference on Uncer-
tainty in Artificial Intelligence, 328–337. AUAI
Press.

Braun, Tanya. 2020. “Rescued from a Sea of Queries:
Exact Inference in Probabilistic Relational Mod-
els.” PhD diss., University of Lübeck.

Ahmadi, Babak, Kristian Kersting, Martin Mladenov,
and Sriraam Natarajan. 2013. “Exploiting Sym-
metries for Scaling Loopy Belief Propagation and
Relational Training.” Machine Learning 92 (1):
91–132.

Darwiche, Adnan. 2009. Modeling and reasoning with
Bayesian networks. Cambridge; New York: Cam-
bridge University Press. isbn: 978-0-521-88438-9.

Taghipour, Nima. 2013. “Lifted Probabilistic Inference
by Variable Elimination.” PhD diss., KU Leuven.

Gehrke, Marcel, Tanya Braun, and Ralf Möller. 2018.
“Lifted Dynamic Junction Tree Algorithm.” In
Proceedings of the International Conference on
Conceptual Structures, 55–69. Springer.

