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Abstract. One dimensional versions of the Markov chain and the hid-
den Markov model have been generalized as Gaussian processes. Cur-
rently these approaches support only a single dimension which is limit-
ing their usability. In this paper we encode the more general dynamic
Gaussian Bayesian network as a Gaussian process and thus allow ar-
bitrary number of dimensions and arbitrary connections between time
steps. Our developed Gaussian process based formalism has the advan-
tage of supporting a direct inference from any time point to the other
without propagation of evidence throughout the whole network, flexibil-
ity to combine the covariance function with others if needed and keeping
all properties of the dynamic Gaussian Bayesian network.
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1 Introduction

Understanding the fundamental relationships between different probabilistic mod-
els is vital to guide further research and to exploit the benefits of different ap-
proaches. Two specific types of one-dimensional Gaussian distributed probabilis-
tic graphical models (PGMS), the Markov chain (MC) and the hidden Markov
model (HMM), have already been encoded as Gaussian Processes (GPs), show-
ing the generalizing power of GPs [6]. As Murphy [11] has elaborated, dynamic
Bayesian networks, are a more general type of a PGM compared to the MC and
the HMM. Consequently, it is an improvement and thus a contribution to encode
the dynamic Gaussian Bayesian network (DGBN) as a Gaussian Process, which
is focus of this paper. By encoding we mean a generalization of the DGBN into
the GP framework while maintaining all characteristics of the original DGBN.

DGBNs in general offer a sparse and interpretable representation for prob-
abilistic distributions and allow to model (in)dependencies between its random
variables [7, 9]. The interpretability of the modeling language also makes it possi-
ble to construct DGBNs based on expert knowledge instead of or as an addition
to learning them from data [3, 4]. Komurlu and Bilgic[8] explicitly favor the usage
of a DGBN over a GP in their application because in classic GPs, dependencies
between output random variables are not easily taken into account. There are
also downsides of DGBNs. First, the time dimension is still discrete which brings
up the problem of finding the right sampling rate. Second, evidence is usually
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propagated through the graphical structure which can be computational expen-
sive. Third, they are based on linear relationships between random variables
which makes it difficult to model certain real-world phenomena, e.g. periodic
behaviors.

Gaussian Processes (GPs) are another approach applied for modeling time-
series [16, 5] and have been rather recently brought into focus of the machine
learning community [13]. Both DGBNs and GPs have Gaussian distributions
over their random variables at any point in time. In contrast to DGBNs, GPs
are continuous on the time dimension and allow direct inference without propa-
gation of evidence through a network. Additionally, an existing GP that models
a certain behavior can be easily extended or adapted by making changes to its
covariance function. Drawbacks of GPs are that modeling multiple outputs at
once is challenging [1] and that modeling a detailed interpretable (in)dependence
structure as it is done in a DGBNs is currently not possible. Encoding the mul-
tidimensional and Markovian aspects of a DGBN into a Gaussian process could
combine the benefits of two models.

The remainder of the paper has following structure. We start by explaining
the preliminaries about PGMs and GPs. After discussing related work, we con-
struct GPs Dynamic Gaussian Bayesian Networks with arbitrary connections
between time steps. We conclude with a discussion of benefits and downsides of
the created GPs and with an agenda for further research in that area.

2 Preliminaries

In this section we introduce PGMs, GPs and kernel functions for GPs. After-
wards, we briefly review the advantages of the two models, which also motivates
combining them.

2.1 Probabilistic Graphical Models

This section gives a brief overview about the different types of PGMs used in
this paper. For further details we refer to the work by Koller et al. [7], Pearl [12]
and Murphy [11].

In general, a PGM is a network with nodes for the random variables and
edges to describe relations between them. When looking at random variables
over time dynamic variants of PGMs are used and when looking at continuous
random variables often Gaussian PGMs are used. Dynamic Gaussian Bayesian
networks (DGBNs) are a general representation for the development of continu-
ous random variables over time. A Gaussian Markov chain, which describes the
development of a single Gaussian distributed random variable over time, and a
Gaussian hidden Markov model, which contains two random variables over time,
are special cases of the DGBN [11]. A DGBN allows arbitrary links between the
random variables [11]. Figure 1 contains illustrations of three different types
of DGBNs. Since Hartwig et al.[6] have already worked on Gaussian Markov
chains and Gaussian hidden Markov models, this paper focuses on generalizing
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Fig. 1. Three different types of PGMs: a) Markov chain b) hidden Markov model c)
dynamic Bayesian network

the approach to DGBNs. The only restriction is that we do not allow connections
between random variables within an individual time step.

In general, we denote the set of random variables as X and the set random
variables that are influencing a specific random variable X ∈ X as its parents
Pa(X). Each random variable follows a conditional Gaussian probability distri-
bution that is linearly dependent on its parent and is given by

P (X|Pa(X)) ∼ N

µX +
∑

Π∈Pa(X)

βX,Π(π − µΠ);σ2
X

 , (1)

where µA and µΠ are the unconditional means of X and Π respectively, π is
the realization of Π, σ2

X is the variance of X and βX,Π represents the influence
of the parent Π on its child X.

A DGBN can be represented by a pair of BNs. The first BN defined the prior
distribution P (X1) at time t = 1. The second BN is a two-slice temporal BN
(2TBN) which defines P (Xt|Xt−1). This representation is parameterized by a
mean vector µ and covariance matrix Σ for the first BN and a transition matrix
M containing the linear relationships over time. Figure 2 contains a visualization
of a three dimensional 2TBN.

2.2 Gaussian Processes

A GP is a collection of random variables, any finite number of which have a
joint Gaussian distribution [13]. A GP can be interpreted as a distribution over
functions on a spatial dimension, which is in our case the time dimension t. It
is completely specified by its mean µ = m(t) and its covariance function k(t, t′)
and can be written as

f(t) ∼ GP (m(t), k(t, t′)). (2)

The covariance function (also known as kernel function) describes the simi-
larity of function values at different points in time (t and t′) and influences the
shape of the function space [13].
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Fig. 2. A DGBN represented by a prior and a 2TBN

If we have a dataset that consists of an input vector t and an output vector y,
we can define any vector of time points t∗ for which we would like to calculate the
posterior distribution. The joint distribution over the observed and the unknown
time points is given by

p

([
y
y∗

])
= N

([
µ(t)
µ(t∗)

]
,

[
K(t, t) K(t, t∗)
K(t∗, t) K(t∗, t∗)

])
, (3)

where K(t, t∗) is a covariance matrix produced by plugging all values from (t, t∗)
into the covariance function k(t, t′). By applying the conditional probability rules
for multivariate Gaussians [16] we obtain the posterior P (y∗) with mean m∗ and
covariance matrix C∗

P (y∗) = N(m∗, C∗), (4)

where

m∗ = µ(t∗) +K(t∗, t)K(t, t)−1(y− µ(t)) (5)

and

C∗ = K(t∗, t∗)−K(t∗, t)K(t, t)−1K(t∗, t)T . (6)

2.3 Kernel Functions

Rasmussen [13] provides an overview of different possible kernels with the squared
exponential kernel

kSE(t, t′) = σ2 exp

(
− (t− t′)2

2l2

)
, (7)

where σ2 and l are hyperparameters for the signal noise and the length scale
respectively, being a commonly used one.

A valid kernel k : T×T→ R for a GP needs to fulfill two characteristics [13]:

– symmetry, i.e., k(t, t′) = k(t′, t) for all t and t′,
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– being positive semidefinite, i.e., symmetry and
∑n
i=1

∑n
j=1 cicjk(ti, tj) for

n ∈ N , t1, ..., tn ∈ T, c1, ..., cn ∈ R.

Valid Kernels can be constructed of other kernels. Bishop [2] lists valid kernel
operations from which we use the following subset in later sections. Given valid
kernels k1(t, t′), k2(t, t′) and a constant c, the following kernels will also be valid:

k(t, t′) = ck1(t, t′), (8)

k(t, t′) = k1(t, t′) + k2(t, t′), (9)

k(t, t′) = exp(k1(t, t′)), (10)

k(t, t′) = k1(t, t′)k2(t, t′). (11)

2.4 Benefits of the Models

In their work on one-dimensional markov Chains and hidden Markov models
Hartwig et al. [6] have listed benefits of the GPs and PGMs, which we will
review here briefly. PGMs can capture (conditional) dependencies and indepen-
dencies of the random variables very intuitively [7] and be thus also constructed
by incorporating expert knowledge (either entirely or as a prior). PGMs can be
naturally multidimensional, which allows representing the probability distribu-
tion over multiple random variables simultaneously. Last but not least, PGMs
have already been used in many applications and therefore a wide range of in-
ference and learning tactics have been developed [7].

The usage of GPs has also benefits. In general GPs have a continuous spa-
tial dimension which allows to model continuous changes directly and without
the need of discretization. GPs are nonparametric and directly incorporate a
quantification of uncertainty. Because of their joint Gaussian characteristics,
calculating posterior distributions is straightforward and relatively efficient [16].

Consequently, converting the PGMs to GPs while retaining the PGM benefits
is a promising research direction.

3 Related Work

There have been three different streams to bring graphical or relational models
together with GPs. One research stream known as relation learning uses mul-
tiple GPs to identify probabilistic relations or links within sets of entities [19,
20]. A second research stream uses GPs for transition functions in state space
models. Frigola-Alcalde [5] has researched different techniques for learning state
space models that have GP priors over their transition functions and Turner [18]
has explored change point detection in state space models using GPs. A third
research stream focuses on constructing covariance functions for GPs to mimic
certain behaviors from other models. Reece and Roberts [15, 14] have shown that
they can convert a specific Kalman filter model for the near constant acceleration
model into a kernel function for a GP and then combine that kernel function
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with other known kernels to get better results temporal-spatial predictions. Ras-
mussen [13] has introduced GP kernels for, e.g., a wiener process. As mentioned
above Hartwig et al. [6] have constructed a kernel for a one-dimensional DGBN
also referred to a scalar version of a markov chain. The kernel is defined by

k(t, t′) = σ2
Xβ
|t−t′|
X

1− β2min(t,t′)
X

1− β2
X

. (12)

This paper will build upon the scalar case and generalize it for the multidimen-
sional DGBN.

4 Gaussian Processes for Dynamic Gaussian Bayesian
Networks

We have X(1), ..., X(N) random variables in the DGBN evolving over time t =
1, ..., T̃ (we use T̃ to avoid confusion with the matrix transpose), where N is the
number of dimensions and T̃ the number of time steps in a DGBN. As Alvarez
et al. [1] described, multidimensional kernels follow the form K(Dt, D

′
t′), where

D and D′ are dimensions of the underlying model. We will develop a kernel
function that has an N × X dimensional matrix as an output containing all
covariances between random variables in time steps t and t′

K(t, t′) =


K(X

(1)
t , X

(1)
t′ ) . . . K(X

(1)
t , X

(N)
t′ )

...
. . .

...

K(X
(N)
t , X

(1)
t′ ) . . . K(X

(N)
t , X

(N)
t′ )

 . (13)

4.1 Constructing the GP

Shachter and Kenley [17] have developed an algorithm to convert a Gaussian
Bayesian network into a multivariate Gaussian distribution. To prove correct-
ness, they formulated the following Lemma that we will reuse.

Lemma 1. For G ∈ N topological ordered random variables X(i) ∈ X, i =
1, . . . , G in a Gaussian Bayesian network let σ2

i be the variance of the conditional
distribution of Xi given its parents. Let B ∈ RG×G be a matrix, where the
entries βi,l, l = 1, ..., G describe the linear relationship between a child X(i)

and its parent X(l). If X(l) is no parent of X(i) the entry is zero. For a fixed
j ∈ {1, . . . , G} let Σqq be the covariance matrix between all random variables
X(q), q = 1, ..., j and Bsj ∈ Rj−1×1, s = 1, . . . , j − 1 the corresponding part of
B. We denote the matrices

Sj :=


Σtt 0 . . . 0
0 σ2

j+1 . . . 0
...

...
. . . 0

0 0 0 σ2
G

 , (14)
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Uj :=

Ij−1 Bsj 0
0 1 0
0 0 IG−j

 . (15)

Then it is

Sj = UT
j−1Sj−1Uj−1 (16)

and

Σ = SG = UT
G...U

T
1 S0U1...UG, (17)

where Σ ∈ RG×G is the covariance matrix of the equivalent multivariate Gaus-
sian distribution for the above defined Gaussian Bayesian network.

The N ×N covariance matrix from Equation 17 is calculated by recursively
multiplying the U-matrices. To define a GP we do not want to calculate a full
covariance matrix as it is done in Lemma 1, but we need a kernel function
mapping arbitrary time points t and t′ to a covariance value or in our case
covariance matrix as defined in Equation 13. Therefore we convert the recursive
multiplication of the matrices in Equation 17 into closed form kernel function.

If we look at a certain number of time steps T̃ , we have a number of total
nodes in our network of G = T̃N . The matrix S0 is diagonal with the indi-
vidual variances for each of the G individual nodes. In the respective network.
To ensure a topological ordering for our DGBN, we position all variables be-
longing to a time step t before all variables of t + 1. The order within a time
step is irrelevant because there are no relations within a time step. For the sake
of simplicity we order the variables within a time step based on their indexing
X(1), ..., X(N). Figure 3 contains a visualization for the structure of the resulting
covariance matrix. As shown, the kernel function can flexibly generate parts of
a full covariance matrix.

Since the σ2-values for all random variables stay constant over time, the
matrix S0 has repeating diagonal entries every N entries. We denote A for the
N ×N block that is on the diagonal of S0, which itself is constructed by

A = diag(σ2
X(1) , ..., σ

2
X(N)). (18)

The G×G-dimensional matrix B from Lemma 1 containing all linear relation-
ships in the DGBN has the T̃ × T̃ -dimensional block structure, where M is the
N ×N transition matrix, resulting in

B =


0 M 0 0 . . . 0
0 0 M 0 . . . 0

0
...

...
. . .

. . .
...

0 0 0 . . . 0 M

 , (19)

having the transition matrix M at all block positions (t, t+ 1). Given this struc-
ture, we can reformulate Equation 17 from Lemma 1. With N dimensions we
can multiply N consecutive matrices from Ut to Ut+N that would belong to the
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Fig. 3. Visual structure of the resulting covariance matrix

random variables within one time step.

Ot =

t+N∏
i=t

Ui =


I(t−2)N 0 0 0

0 IN M 0
0 0 IN 0
0 0 0 I(T−t)N

 . (20)

With block matrix multiplication, and the construction of matrices Ot we can
reformulate the multiplication from Lemma 1 into

G∏
i=1

Ui =

T∏
t=1

Ot =


I M M2 . . . MT̃

0 I M . . . MT̃−1

0 0 I . . . MT̃−2

...
...

...
. . .

...
0 0 0 . . . I

 . (21)

The full G×G covariance matrix would be calculated by using Equation 17.
In our kernel function we only want to calculate the N × N matrix containing
the covariances between two time steps t and t′. We would get this matrix
by multiplying the t-th row of blocks from UT

G...U
T
1 , with the t′-th column of

S0U1...UG. If t = t′ we have
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

Mt−1

Mt−2

Mt−3

...
M0

0
...
0



T

·



AMt−1

AMt−2

AMt−3

...
AM0

0
...

A0


=

t∑
k=0

(MT )
k
AMk. (22)

In the case t 6= t′ we look at t < t′, because of symmetry same conclusions
can be made when setting t < t′. In our case, the t-th row of blocks contains
more blocks and also blocks with higher exponential. Because of the all-zero
matrices, only the first t blocks are relevant, resulting in


Mt−1

Mt−2

...
M0

 ·


AMt′−1

AMt′−2

...

AMt′−t


T

=

t∑
k=0

(MT )
k
AMk+(t′−t) =

(
t∑

k=0

(MT )
k
AMk

)
Mt′−t

(23)

For the case t > t′, the resulting matrix needs to be the transposed version
of the previous case, which can be proven by


Mt−1

Mt−2

...

Mt−t′

 ·


AMt′−1

AMt′−2

...
AM0


T

=

t′∑
k=0

(MT )
k+(t−t′)

AMk = MT t
′−t

t′∑
k=0

(MT )
k
AMk.

(24)

Resulting in a kernel function of

K(t, t′) =


(∑min(t,t′)

i=0 MTAM
)

M|t−t′|, t ≤ t′,((∑min(t,t′)
i=0 MTAM

)
M|t−t′|

)T
, t > t′.

(25)

As mentioned in Section 2.2, the GP is defined by its kernel or covariance
function and the mean function. We have defined the covariance function in
Equation 25. The mean function is time independent and is simply a constant
mean vector defined by the DGBN, where each random variable X(i) has a mean
value µX(i) , resulting in

m(t) = µ (26)
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4.2 Continuity Discussion

In general, a GP is defined over a continuous scale. Having a continuous scale
would be a benefit compared to the discrete DGBN. For a GP to be continuous
the kernel need to be defined for t, t′ ∈ R. The two key issues are that neither the
summation term nor the exponential of the matrix M are necessarily uniquely
defined defined for t ∈ R. The one-dimensional kernel function for the scalar case
from Equation 12 solves this issue by converting the summation in a continuous
defined partial sum of a geometric series [6, 10]

In this paper we will keep the time-scale discrete but we discuss a few ideas
how to generalize the kernel for a continuous case. The summation is dependent
on the min value of t and t′, meaning that if the smaller of the two values is a
natural number, the summation is defined. In realtiy for working with the GP
this means that if we would like to forecast one moment in the future tf , that
moment could be a real number. All other evidence points in the past would
need to be discrete. Müller and Schleicher [10] have discussed specific fractional
sums but a full mathematical consideration is not in the scope of this paper. The
exponent |t− t|′ is real value if t or t′ are real numbers. For rational exponents
the result is defined by the n-th root

M( q
d ) =

d
√

Mq. (27)

The n-th root can have none, exactly one or multiple solutions, depending on the
structure of M. A full continuous definition of the GP would need to handle the
cases where there is no exact solution or put further restrictions on the transition
matrix M.

4.3 Kernel Properties

To be a valid kernel, the kernel needs to be symmetric which directly follows
from Equation 13 and Equation 24. Additionally, the kernel needs to result
in a positive semidefinite covariance matrix. In Section 2.3 we introduced that
kernels can be created of other valid kernels. The min(t, t′) and the a|t−t

′| terms
are valid kernels. Also a summation of valid kernels is a valid kernel. Since the
matrix M only contains constant values, using the resulting kernel function from
Equation 25 results in a symmetric and positive semidefinite covariance matrix
and is therefore valid for a GP.

5 Discussion and Outlook

In this paper we encoded a multidimensional DGBN with arbitrary connections
between time steps into a Gaussian Process. We demonstrate the generalizing
power of GPs by converting a already very general PGM into a GP. All that is
needed, is the correct kernel function to describe relationships between random
variables along the time dimension. The contribution of the paper has impact on
the theoretical research in the fields. Bringing together different research streams
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and the underlying concepts can benefit both research areas. Existing methods
from one area can be possibly transferred to the other research stream and
enhance existing applications and vice versa. Also further research can be better
directed because scholars in different research groups can work closer together.
The results of the paper also bring practical benefits:

Efficient Query Answering: In a DGBN the evidence is usually propa-
gated through the model along the time dimension. In the constructed GP the
kernel allows us to explicitly define the effect of an observation to any other
queried point in time which can speeds up the querying answering process

Markov Property: The defined kernels keep the Markov property and the
transition behavior of the underlying model.

Kernel Combination: The created kernel can be combined with any other
existing kernels. If the real-world phenomenon is relatively well described by
the DGBN-kernel but also contains a slight periodic behavior, both kernels can
easily combined by different operations, e.g. addition and multiplication [13].

There are three streams for further research. First, even further generalize
the DGBN and allow also intra-time slice connections. Second, conduct mathe-
matical deep-dives to understand the circumstances under which the kernel can
be used in a continuous time setting. Third, transfer real-world applications pre-
viously using DGBN into GPs and evaluate query answering time and potential
model enhancements by combining kernels.
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