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Abstract

Probabilistic graphical models have been successfully ap-
plied in a lot of different fields, e.g., medical diagnosis and
bio-statistics. Multiple specific extensions have been devel-
oped to handle, e.g., time-series data or Gaussian distributed
random variables. In the case that handles both Gaussian vari-
ables and time-series data, downsides are that the models still
have a discrete time-scale, evidence needs to be propagated
through the graph and the conditional relationships between
the variables are bound to be linear. This paper converts two
probabilistic graphical models (the Markov chain and the hid-
den Markov model) into Gaussian processes by constructing
covariance and mean functions, that encode the character-
istics of the probabilistic graphical models. Our developed
Gaussian process based formalism has the advantage of sup-
porting a continuous time scale, direct inference from any
time point to the other without propagation of evidence and
flexibility to modify the covariance function if needed.

1 Introduction
A lot of applications from medical diagnosis, bio-statistics,
ecology, maintenance, etc. have been represented by prob-
abilistic graphical models (PGMs) (Weber et al. 2012;
McCann, Marcot, and Ellis 2006). Markov chains, hidden
Markov models (HMMs) and dynamic Bayesian networks
(DBNs) are PGMs that model time series (Murphy 2002).
All three models have been originally discrete models, but
versions that allow for continuous Gaussian distributed vari-
ables have been developed and successfully applied (Grze-
gorczyk 2010). PGMs in general offer a sparse and inter-
pretable representation for probabilistic distributions and al-
low to model (in)dependencies between its random variables
(Koller, Friedman, and Bach 2009; McCann, Marcot, and
Ellis 2006). The interpretability of the modeling language
for a PGM also makes it possible to construct PGMs based
on expert knowledge instead of or as an addition to learn-
ing them from data (Constantinou, Fenton, and Neil 2016;
Flores et al. 2011). There are downsides of the Gaussian
variants of PGMs for time-series. First, the time dimension
is still discrete which brings up the problem of finding the
right sampling rate. Second, evidence is usually propagated
through the graphical structure which can be computational
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expensive. Third, the Gaussian variants are based on linear
relationships between random variables which makes it dif-
ficult to model certain real-world phenomenon, e.g. periodic
behaviors.

Gaussian Processes (GPs) are another approach applied
for modeling time-series (Roberts et al. 2013; Frigola-
Alcalde 2016) and have been rather recently brought into fo-
cus in the machine learning community (Rasmussen 2006).
Both Gaussian PGMs and GPs have Gaussian distributions
over their random variables at any point in time. In con-
trast to PGMs, GPs are continuous on the time dimension
and allow direct inference without propagation of evidence
through a network. Additionally, an existing GP that mod-
els a certain behavior can be easily extended or adapted by
making changes to its covariance function. Drawbacks of
GPs are that modeling multiple outputs at once is challeng-
ing (Alvarez et al. 2012) and that modeling a detailed inter-
pretable (in)dependence structure as it is done in a PGM is
currently not possible.

Since the GPs and Gaussian time-series PGMs are both
based on Gaussian distributions along a time dimension,
this paper aims to bring the two approaches together. More
specifically, we convert two well known Gaussian PGMs for
time-series - the Markov chain and the HMM - into a GP
representation which unlocks the benefits mentioned above.
The key is to build a covariance function that encodes the
characteristics of the PGMs.

The remainder of the paper has following structure. We
start by explaining the preliminaries about PGMs and GPs
and their respective benefits. Afterwards we discuss related
work that draw connections between relation based models
and GPs and construct GPs for two PGMs - the Markov
chain and the hidden Markov model. We conclude with a
discussion of benefits and downsides of the created GPs and
with an agenda for further research in that area.

2 Preliminaries
In this section we introduce PGMs, GPs and kernel functions
for GPs. Afterwards, we discuss the advantages of the two
models, which also motivates combining them.

2.1 Probabilistic Graphical Models
This section gives a brief overview about the three different
types of PGMs used in this paper. For further details we re-
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Figure 1: Three different types of PGMs: a) Markov chain
b) hidden Markov model c) dynamic Bayesian network

fer to the work by Koller, Friedman, and Bach (2009), Pearl
(1988) and Murphy (2002).

In general, a PGM is a network with nodes for the ran-
dom variables and edges to describe relations between them.
A Gaussian Markov chain describes the development of a
single Gaussian distributed random variable over time. A
Gaussian HMM has two variables that develop over time,
one being a latent state and one being an observable state
variable. A dynamic Gaussian Bayesian network is a gen-
eral PGM, that allows arbitrary links between the random
variables (Murphy 2002). Figure 1 contains illustrations of
the three different types of PGMs. We denote the set of ran-
dom variables as X and the set random variables that are
influencing a specific random variable A ∈ X as its parents
Pa(A). Each random variable follows a conditional Gaus-
sian probability distribution that is linearly dependent on its
parent and is given by

P (A|Pa(A)) ∼ N
(
µA +

∑
Π∈Pa(A) βA,Π(π − µΠ), σ2

A

)
, (1)

where µA and µΠ are the unconditional means of A and
Π respectively, π is the realization of Π, σ2

A is the variance
of A and βA,Π represents the influence of the parent Π on
its child A.

The joint probability distribution

P (X) =
∏
X∈X

p(X|Pa(X)) (2)

is the product of all conditional probability distributions.

In a PGM for time-series, the variables X develop over
time which we denote by Xt. It can be fully defined by start-
ing distribution P (X1) of X at time t = 1 and its transition
over time which is described by the conditional probability
distribution P (Xt|Xt−1) (Murphy 2002).

2.2 Gaussian Processes
A GP is a collection of random variables, any finite num-
ber of which have a joint Gaussian distribution (Rasmussen
2006). A GP can be interpreted as a distribution over func-
tions on a spatial dimension, which is in our case the time
dimension t. It is completely specified by its mean µ = m(t)
and its covariance function k(t, t′) and can be written as

f(t) ∼ GP (m(t), k(t, t′)). (3)
The covariance function (also known as kernel function)

describes the similarity of function values at different points
in time (t and t′) and influences the shape of the function
space (Rasmussen 2006).

If we have a dataset that consists of an input vector t and
an output vector y, we can define any vector of time points
t∗ for which we would like to calculate the posterior dis-
tribution. The joint distribution over the observed and the
unknown time points is given by

p

([
y
y∗

])
= N

([
µ(t)
µ(t∗)

]
,

[
K(t, t) K(t, t∗)
K(t∗, t) K(t∗, t∗)

])
, (4)

where K(t, t∗) is a covariance matrix produced by plugging
all values from (t, t∗) into the covariance function k(t, t′).
By applying the conditional probability rules for multivari-
ate Gaussians (Roberts et al. 2013) we obtain the posterior
P (y∗) with mean m∗ and covariance matrix C∗

P (y∗) = N(m∗, C∗), (5)

where

m∗ = µ(t∗) +K(t∗, t)K(t, t)−1(y− µ(t)) (6)

and

C∗ = K(t∗, t∗)−K(t∗, t)K(t, t)−1K(t∗, t)T . (7)

2.3 Kernel Functions
Rasmussen (2006) provides an overview of different possi-
ble kernels with the squared exponential kernel

kSE(t, t′) = σ2 exp

(
− (t− t′)2

2l2

)
, (8)

where σ2 and l are hyperparameters for the signal noise and
the lengthscale respectively, being a commonly used one.

A valid kernel k : T × T → R for a GP needs to fulfill
three characteristics (Rasmussen 2006):
• continuity, i.e., T ⊂ R,
• symmetry, i.e., k(t, t′) = k(t′, t) for all t and t′,
• being positive semidefinit, i.e., symmetry and∑n

i=1

∑n
j=1 cicjk(ti, tj) for n ∈ N , t1, ..., tn ∈ T,

c1, ..., cn ∈ R.



Valid Kernels can be constructed of other kernels. Bishop
(2006) lists valid kernel operations from which we use
the following subset in later sections. Given valid kernels
k1(t, t′), k2(t, t′) and a constant c, the following kernels will
also be valid:

k(t, t′) = ck1(t, t′), (9)

k(t, t′) = k1(t, t′) + k2(t, t′), (10)

k(t, t′) = exp(k1(t, t′)), (11)

k(t, t′) = k1(t, t′)k2(t, t′). (12)

2.4 Benefits of the Models
PGMs have several benefits that make them straightforward
to use. One benefit is that they can capture (conditional) de-
pendencies and independencies of the random variables very
intuitively (Koller, Friedman, and Bach 2009). Another ben-
efit is that PGMs can incorporate expert knowledge; it is pos-
sible to construct a network entirely by expert knowledge
but it is also possible to use expert knowledge as a prior for
the probability distribution (Flores et al. 2011). HMMs and
DBNs can model the probability distribution over multiple
random variables simultaneously. Last but not least, PGMs
have already been used in many applications and therefore
a wide range of inference and learning tactics have been de-
veloped (Koller, Friedman, and Bach 2009).

The usage of GPs has also benefits. GPs have a continu-
ous sequential dimension which allows to model continuous
changes directly and without the need of discretization. GPs
are nonparametric and directly incorporate a quantification
of uncertainty. Because of their joint Gaussian character-
istics, calculating posterior distributions is straightforward
and relatively efficient (Roberts et al. 2013).

Converting the PGMs to GPs while retaining the PGM
characteristics is a promising approach that we pursue in this
paper to exploit the benefits of both approaches.

3 Related Work
There have been three different streams to bring graphi-
cal or relational models together with GPs. One research
stream known as relation learning uses multiple GPs to iden-
tify probabilistic relations or links within sets of entities
(Xu, Kersting, and Tresp 2009; Yu et al. 2007). A second
research stream uses GPs for transition functions in state
space models. Frigola-Alcalde (2016) has researched dif-
ferent techniques for learning state space models that have
GP priors over their transition functions and Turner (2012)
has explored change point detection in state space models
using GPs. A third research stream focuses on construct-
ing covariance functions for GPs to mimic certain behaviors
from other models. Reece and Roberts (2010b) have shown
that they can convert a specific Kalman filter model for the
near constant acceleration model into a kernel function for a
GP and then Reece and Roberts (2010a) combine that ker-
nel function with other known kernels to get better results
temporal-spatial predictions. Rasmussen (2006) has intro-
duced GP kernels for, e.g., a wiener process (the min ker-
nel), that we will reuse in this paper as well. The results of

this paper contribute to the third by providing a novel ap-
proach to converting two PGMs into a GP, which as far as
we know has not yet been done.

4 Gaussian Processes for Markov Chains
In this section we construct a continuous GP for the Gaus-
sian Markov chain model. Let A be a random variable with
a linear relationship between the time points t and t−1. The
Gaussian distributed Markov chain can be also interpreted as
a dynamic Gaussian Bayesian network with one dimension.
It is described by its initial distribution P (A1) with

P (A1) = N(µA1 ;σ2
A1

) (13)

and a transition distribution P (At|At−1) with

P (At|At−1) = N(µAt
+ βAt,At−1

(at−1 − µAt−1
);σ2

At
). (14)

For simplicity, we assume that σ2
A1

= σ2
At

=: σ2
A and

µA1
= µAt

=: µA.

4.1 Constructing the Kernel
Shachter and Kenley (1989) have developed an algorithm
to convert a Gaussian Bayesian network into a multivariate
Gaussian distribution. To prove correctness, they formulated
the following Lemma that we will reuse.
Lemma 1. For N ∈ N topological ordered random vari-
ables Xi ∈ X, i = 1, . . . , N in a Gaussian Bayesian net-
work let σ2

i be the variance of the conditional distribution
of Xi given its parents. Let B ∈ RN×N be a matrix, where
the entries βi,l, l = 1, ..., N describe the linear relationship
between a child Xi and its parent X l. If X l is no parent
of Xi the entry is zero. For a fixed j ∈ {1, . . . , N} let Σtt
be the covariance matrix between all random variables Xt,
t = 1, ..., j and Bsj ∈ Rj−1×1, s = 1, . . . , j − 1 the corre-
sponding part of B. We denote the matrices

Sj :=


Σtt 0 . . . 0
0 σ2

j+1 . . . 0
...

...
. . . 0

0 0 0 σ2
N

 , (15)

Uj :=

[
Ij−1 Bsj 0

0 1 0
0 0 IN−j

]
. (16)

Then it is
Sj = UTj−1Sj−1Uj−1 (17)

and
Σ = SN = UTN ...U

T
1 S0U1...UN , (18)

where Σ ∈ RN×N is the covariance matrix of the equiva-
lent multivariate Gaussian distribution for the above defined
Gaussian Bayesian network.

The N ×N covariance matrix from Equation 18 is calcu-
lated by recursively multiplying the U -matrices. To define
a GP, a kernel function must be constructed that maps arbi-
trary time points t and t′ to a covariance value. Therefore we
convert the recursive multiplication of the matrices in Equa-
tion 18 into a kernel function.



The matrix S0 is diagonal with the individual variances
for each individual node. In the case of the Markov chain,
each value on the diagonal is σ2

A. Additionally, the matrix
B has entries βAt,At−1

:= βA at the positions (s, s+ 1) for
s = 1, ..., N , which describe the linear relationship along
the time dimension of A, and zeroes everywhere else. Con-
sequently, the matrix Ui is the identity matrix of the size
N × N with a βA at position (i − 1, i). By multiplying all
U -matrices as indicated above, we obtain the diagonal ma-
trix

N∏
i=1

Ui =


1 βA β2

A . . . βNA
0 1 βA . . . βN−1

A

0 0 1 . . . βN−2
A

...
...

...
. . .

...
0 0 0 . . . 1

 . (19)

The same applies for the left part of the Equation 18:

N∏
i=1

UTi =


1 0 0 . . . 0
βA 1 0 . . . 0
β2
A βA 1 . . . 0
...

...
...

. . .
...

βNA βN−1
A βN−2

A . . . 1

 . (20)

Since all values on the diagonal-matrix S0 have the same
scalar value σ2

A, we can multiply out the constant σ2
A, result-

ing in

Σ = UTN ...U
T
1 S0U1...UN = σ2

A

N∏
i=1

UTi

N∏
i=1

Ui. (21)

We multiply row i from Equation 20 with column j from
Equation 19. For i = j (the diagonal of the resulting covari-
ance matrix), we calculate the covariance with



βi−1
A

βi−2
A

βi−3
A
...
β0
A
0
...
0


·



βi−1
A

βi−2
A

βi−3
A
...
β0
A
0
...
0



T

=

i∑
k=0

(βkA)2. (22)

For i 6= j, we denote the difference as d = |i − j|. Be-
cause of the symmetry of matrices in 19 and 20 there is no
difference between the cases j > i and j < i. Let j > i,
then the j-th vector contains more elements and in addition
elements with higher exponents. This changing values are
only relevant in the first i entries because all other entries

are multiplied with zero. Substituting j by i+ d results in:
βi−1
A

βi−2
A

βi−3
A
...
β0
A

 ·

βj−1
A

βj−2
A

βj−3
A
...

βj−iA



T

=


βi−1
A

βi−2
A

βi−3
A
...
β0
A

 ·

βi+d−1
A

βi+d−2
A

βi+d−3
A

...
βdA


T

=

i∑
k=0

βkAβ
k+d
A = βdA

i∑
k=0

(βkA)2.

(23)

To ensure symmetry of the kernel, we also need to include
the case i > j, which leads to replacing i by min(i, j) and d
by |i−j| in Equation 23. We reformulate the whole equation
using the formula for the partial sum of a geometric series
and replace i and j with t and t′ respectively:

k(t, t′) = σ2
Aβ
|t−t′|
A

1− βmin(t,t′)
A

1− βA
. (24)

We have shown that Equation 24 can be used to construct
a covariance matrix that encodes the characteristics of the
Gaussian Markov chain.

4.2 Proving the Kernel
To prove the validity of the kernel for a GPs, we use the
characteristics that kernels can be constructed of other ker-
nels using the equations defined in Section 2.4. We show that
the two factors

ka(t, t′) = σ2
Aβ
|t−t′|
A , (25)

kb(t, t
′) =

1− βmin(t,t′)
A

1− βA
. (26)

of the Equation 24 are valid kernels. Then, based on Equa-
tion 12, our constructed kernel being the product of the two
factors is a valid kernel as well. The exponent |t − t|′ is
the one dimensional case of the Euclidean distance kernel
(Bishop 2006). With Equation 9 and the exponential rule
from Equation 11 ka(t, t′) is a valid kernel.

To show that the function kb(t, t′) is a valid kernel, we
use the summation in Equation 23. Equation 23 converts
the fraction back into a sum of exponential functions that
have a positive numbers n = 1, ...,min(t, t′) as the expo-
nents. Based on Equation 10, Equation 11 and the fact that
min(t, t′) is a valid kernel (Rasmussen 2006), the function
kb(t, t

′) is a valid kernel. Consequently, Equation 24 is a
valid kernel for a GP.

4.3 Defining the Gaussian Process
We just constructed the kernel function, so in order to com-
plete the GP, the mean function needs to be defined. Equa-
tion 14 shows that the value of the random variableA at time
t is defined by a linear function of the difference between the
parents value and its mean denoted by at−1 − µA. Without
any evidence fed into the GP, the difference is symmetrical
distributed around zero, resulting in a constant mean func-
tion

m(t) = µA. (27)



With the covariance function from Equation 24 and the
mean function from Equation 27 we have constructed the
desired GP for a Gaussian Markov chain. The hyperparam-
eters for the constructed GP are βA, σ2

A and µA.

5 Gaussian Processes for Hidden Markov
Models

In a HMM, there are two random variables. We denote the
hidden variable as A and the observable variable as B. In
notation of a dynamic Gaussian Bayesian network, we keep
Equations 13 and 14 for the distributions over At and have a
conditional distribution for Bt

P (Bt|At) = N(µBt + βB,A(at − µAt);σ
2
Bt

), (28)
where the influence from the parent node At to its child
node Bt is equal in every time step. Again we simplify with
σ2
Bt

=: σ2
B and µBt =: µB .

5.1 Constructing the Kernel
We generalize the kernel from the previous section to sup-
port the two random variables as outputs. We denote D as
set of random variables with D = {A,B} in specific HMM
case. Alvarez et al. (2012) introduces multi-output kernels
in the format of

k((D, t), (D′, t′)). (29)
In the previous section the kernel described the similarity
of the random variable A at two different time points t and
t′. The new kernel from based on Equation 29 describes the
similarity of a random variable D at time t to another ran-
dom variable D′ at time t′.

In Section 4.2, we used the Lemma from Shachter and
Kenley (1989) to construct the covariance function. For the
HMM case, we use following recursive covariance formula
from Shachter and Kenley (1989):

Σi,j = Σj,i =
∑

π∈Parents(Nodei)

Σj,πβπ, (30)

Σi,i =
∑

π∈Parents(Nodei)

Σi,πβπ + σ2
i , (31)

where Σi,j is the covariance between two random variables
Xi and Xj . We reformulate for the multidimensional case
and replace Σ with the kernel function

k((D, t), (D′, t′)) = k((D′, t′), (D, t))

=
∑

(Π,π)∈Pa(D,t)

k((D′, t′), (Π, π))βDΠ. (32)

The kernel k(t, t′, A,A) is the same kernel as it is in the
single variable case, because a B-node is never parent of an
A-node:

k((A, t), (A′, t′)) = σ2
Aβ
|t−t′| 1− βmin(t,t′)

1− β
. (33)

In the case k(t, t′, B,A) including the knowledge that
Pa(B, t) = (A, t), the recursive formula from Equation 32
is

k((B, t), (A, t′)) = k((A, t′), (B, t))

= k((A, t′)(A, t))βB,A.
(34)

The last open case is the one where we calculate covari-
ances between twoB-nodes. We reuse the recursive formula
from Equation 32 with the knowledge that the node Bt has
node At as a parent resulting in following formula

k((B, t), (B, t′)) = k((B, t′), (B, t))

= k((B, t′)(A, t))βB,A.
(35)

Reusing Equation 34 results in

k((B, t), (B, t′)) = k((B, t′)(A, t))βB,A

= k((A, t)(A, t′)β2
B,A.

(36)

In the case t = t′, we need to add the constant σ2
B result-

ing in the final kernel

k((D, t), (D′, t′)) =


k(t, t′), if D,D′ = A

k(t, t′)βB,A, if D 6= D′

k(t, t′)β2
B,A + δtt′σ

2
B , if D,D′ = B

, (37)

where δtt′ is the Kronecker-Delta.

5.2 Proving the Kernel
A separable kernel is a multi-dimensional kernel, that can be
reformulated into a product of single-dimensional kernels

k((D, t), (D′, t′)) = k(D,D′)k(t, t′). (38)

A sum of separable kernels is also a valid kernel (Rasmussen
2006; Alvarez et al. 2012).

We need to show that Equation 37 can be rewritten as a
sum of separable kernels. Therefore we write the three dif-
ferent cases as separate kernels on D and D′ which results
in

k1(D,D′) = εD,D′,A, (39)
k2(D,D′) = 1− δD,D′ , (40)
k3(D,D′) = εD,D′,B , (41)

where εD,D′,D∗ is equal to 1 ifD = D′ = D∗ and otherwise
zero and δD,D′ in the Kronecker-Delta. With Equations 39-
41, Equation 37 can be rewritten to

k((D, t), (D′, t′)) = k1(D,D′)k(t, t′)

+ k2(D,D′)(k(t, t′)βB,A)

+ k3(D,D′)k(t, t′)β2
B,A + δt,t′σ

2
B .

(42)

That proves that the constructed kernel is a valid kernel as
well.

5.3 Defining the Gaussian Process
As in Section 4.3, we also need to construct the mean func-
tion. Analogue to the single variable case, the mean func-
tions for A and B are constant resulting in

m(D, t) =

{
µA, if D = A

µB , if D = B
. (43)

For the constructed GP we have a set of hyperparameters
θ = {µA, µB , βA, βB,A}. In HMMs, the mean of B is usu-
ally set to be equal to the mean of A which can be defined
for the model by setting µB = µA.



6 Conclusion and Outlook
We have shown that we can convert two types of PGMs into
Gaussian Processes. The transformation of the two PGMs
into GPs brings significant benefits:

Continuity: The model supports a continuous time scale.
This avoids setting a sample rate and rounding beforehand
because evidence or queried variables can be at any real-
valued point in time.

Kernel Combination: The created kernel can be com-
bined with any other existing kernels. If the real-world phe-
nomenon is relatively well described by the GDBN-kernel
but also contains a slight periodic behavior, both kernels can
easily combined by different operations, e.g. addition and
multiplication (Rasmussen 2006).

Efficient Query Answering: In a dynamic PGM the ev-
idence is usually propagated through the model along the
time dimension. In the constructed GP the kernel allows us
to explicitly define the effect of an observation to any other
queried point in time which speeds up the querying answer-
ing process.

Markov Property: The defined kernels keep the Markov
property and the transition behavior of the underlying
model.

Further relaxing constraints on the underlying PGMs will
be the focus of our further research in that area. More specif-
ically, we would like to further generalize our approach to
support dynamic Gaussian Bayesian networks, that allow ar-
bitrary connections between random variables (as long as
the acyclic-property is not violated). Additionally, we will
add real-world evaluations. First, we would like to evaluate
whether the newly defined kernels and their characteristics
can enhance existing use cases of GPs for time series mod-
eling in their prediction. Second, we would like evaluate if
existing use cases of dynamic Gaussian PGMs can be en-
hanced by either having less run-time for inference, having
a continuous time scale or by combining the new kernels
with existing ones.
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